精英家教网 > 高中数学 > 题目详情
4.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为一三角恒等式,并证明你的结论.
(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ?sinαsinβsin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α)

分析 (1)选择②式由sin215°+cos215°-sin15°cos15°=1-$\frac{1}{2}sin30°$=$\frac{3}{4}$,可得这个常数的值.
(2)推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$,直接利用两角差的余弦公式代入等式的左边,化简可得结果.

解答 解:(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-$\frac{1}{2}sin30°$=$\frac{3}{4}$;------(4分),
(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$,---(6分)
证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)---(7分),
=sin2α+($\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα)2-sinα($\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα)=$\frac{3}{4}$sin2α+$\frac{3}{4}$cos2α=$\frac{3}{4}$---(12分),

点评 本题主要考查两角差的余弦公式,二倍角公式的应用,考查归纳推理以及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.圆心在x轴上,半径长为 $\sqrt{2}$,且过点(-2,1)的圆的方程为(  )
A.(x+1)2+y2=2B.x2+(y+2)2=2
C.(x+3)2+y2=2D.(x+1)2+y2=2或(x+3)2+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)设定点$B(-\frac{9}{5},0)$,问:对于圆C上任一点P,$\frac{PB}{PA}$是否为一常数?若是,求出这个常数值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=x2-ln x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设b,c分别是先后抛掷一枚骰子得到的点数.
(1)设A={x|x2-bx+2c<0,x∈R},求A≠∅的概率;
(2)设随机变量ξ=|b-c|,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a,\overrightarrow b$的夹角为120°,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,则向量$2\overrightarrow a+3\overrightarrow b$在向量$2\overrightarrow a+\overrightarrow b$方向上的投影为$\frac{19\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移$\frac{π}{2}$个单位后与函数$y=sin(2x+\frac{π}{3})$的图象重合,此时φ=(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列结论:①函数y=sin$\frac{x}{2}+\sqrt{3}cos\frac{x}{2}$的图象的一条对称轴方程是x=$\frac{π}{3}$; ②△ABC中,若b=2asinB,则A等于30°;③在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=$\frac{{15\sqrt{3}}}{4}$;④sin70°cos40°cos60°cos80°=$\frac{1}{8}$,其中正确的是(  )
A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知无穷等比数列{an}中,${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案