精英家教网 > 高中数学 > 题目详情
4.已知无穷等比数列{an}中,${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{9}{8}$.

分析 设无穷等比数列{an}的公比为q,运用等比数列的通项公式解方程可得q,再由等比数列的前n项和的公式,结合极限公式,即可得到所求值.

解答 解:设无穷等比数列{an}的公比为q,
由${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,
可得$\frac{3}{2}$q•$\frac{3}{2}$q2=-$\frac{1}{12}$,
解得q=-$\frac{1}{3}$,
则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\underset{lim}{n→∞}$$\frac{{a}_{1}(1-{q}^{n})}{1-q}$
=$\underset{lim}{n→∞}$$\frac{\frac{3}{2}[1-(-\frac{1}{3})^{n}]}{1-(-\frac{1}{3})}$
=$\frac{\frac{3}{2}}{1-(-\frac{1}{3})}$=$\frac{9}{8}$.
故答案为:$\frac{9}{8}$.

点评 本题考查数列的极限的求法,注意运用无穷递缩等比数列的极限公式,考查等比数列的通项公式和求和公式的运用,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为一三角恒等式,并证明你的结论.
(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ?sinαsinβsin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(2x+a)5的展开式中,含x4项的系数等于160,则${∫}_{0}^{a}$(ex+2x)dx等于(  )
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等比数列{an}中,若a5+a6+a7+a8=$\frac{15}{8}$,a6a7=-$\frac{9}{8}$,则$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$+$\frac{1}{{a}_{7}}$+$\frac{1}{{a}_{8}}$=-$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合{φ|f(x)=sin[(x-2φ)π]+cos[(x-2φ)π]为奇函数,且|logaφ|<1}的子集个数为4,则a的取值范围为($\frac{8}{13},\frac{5}{8}$)∪($\frac{8}{5},\frac{13}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在等差数列{an}中,a3=5,a1+a19=-18
(1)求公差d及通项an
(2)求数列 {an}的前n项和Sn及使得Sn的值取最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(2)如图,在△ABC中,D是BC的中点,$\overrightarrow{AE}$=$\overrightarrow{FD}$=$\frac{1}{4}$$\overrightarrow{AD}$,
(i)若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,求$\overrightarrow{BE}$•$\overrightarrow{CE}$的值;
(ii)若P为AD上任一点,且$\overrightarrow{PA}$•$\overrightarrow{PC}$≥$\overrightarrow{EA}$•$\overrightarrow{EC}$恒成立,求证:2AC=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)>f(π),则f(x)的递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]((k∈Z)D.[kπ-$\frac{π}{2}$,kπ]((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α终边经过点P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

同步练习册答案