| A. | [$\frac{3}{11}$,$\frac{1}{3}$] | B. | [$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$] | C. | [$\frac{1}{3}$,$\frac{\sqrt{2}}{4}$] | D. | [3,$\frac{11}{3}$] |
分析 画出约束条件的可行域,化简目标函数,求出直线的斜率的范围,利用函数的最值求解目标函数的范围即可.
解答
解:实数x,y满足条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4≤0}\\{x-1≥0}\end{array}\right.$可行域如图:
$\frac{y}{x}$的几何意义是可行域内的点与坐标原点连线的斜率,
可得$\frac{y}{x}$∈[1,3].
$\frac{xy}{2{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{2x}{y}+\frac{y}{x}}$,
令t=$\frac{y}{x}$,g(t)=$\frac{2}{t}+t$,t∈[1,3],g(t)∈[2$\sqrt{2}$,$\frac{11}{3}$],
$\frac{xy}{2{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{2x}{y}+\frac{y}{x}}$∈[$\frac{3}{11}$,$\frac{\sqrt{2}}{4}$].
故选:B.
点评 本题考查线性规划的简单应用,确定目标函数的几何意义,求解范围是解题的关键.
科目:高中数学 来源: 题型:解答题
| 区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) |
| 人数 | 28 | a | b |
| 喜欢阅读国学类 | 不喜欢阅读国学类 | 合计 | |
| 男 | 14 | 4 | 18 |
| 女 | 8 | 14 | 22 |
| 合计 | 22 | 18 | 40 |
| P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [-1,1] | C. | [-1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{1}{9π}$ | C. | $\frac{4}{9π}$ | D. | $\frac{9π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{12}$ | B. | $\frac{1}{11}$ | C. | $\frac{5}{36}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com