分析 由题意可得b=1-$\frac{1}{2}$a,其中0≤a≤2,代入化简可得(a-1)2+(b+1)2=$\frac{5}{4}$a2-4a+5=$\frac{5}{4}$(a-$\frac{8}{5}$)2+$\frac{9}{5}$,由二次函数区间的最值可得.
解答 解:∵点P(a,b)在线段AB上运动,A(0,1),B(2,0),
∴直线AB的方程为x+2y-2=0,
∴a+2b-2=0,
∴b=1-$\frac{1}{2}$a,其中0≤a≤2,
∴(a-1)2+(b+1)2=(a-1)2+(1-$\frac{1}{2}$a+1)2
=$\frac{5}{4}$a2-4a+5=$\frac{5}{4}$(a-$\frac{8}{5}$)2+$\frac{9}{5}$,
由二次函数可知,当a=$\frac{8}{5}$时上式取最小值,最小值为$\frac{9}{5}$
当a=0时,上式取最大值5,
∴(a-1)2+(b+1)2的取值范围为[$\frac{9}{5}$,5].
点评 本题考查两点间的距离公式,涉及二次函数区间的最值,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | -1 | 0 | 1 |
| P | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1000$\sqrt{42}$m | B. | 1000$\sqrt{6}$m | C. | 1000$\sqrt{24}$m | D. | 1000m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com