精英家教网 > 高中数学 > 题目详情
已知
AB
=(2,5)
AC
=(3,4)
AD
=(1,6)
,且
AC
AB
AD
,求α,β的值.
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:利用向量的数乘和坐标运算、向量相等即可得出.
解答: 解:∵
AC
AB
AD

∴(3,4)=α(2,5)+β(1,6)=(2α+β,5α+6β).
2α+β=3
5α+6β=4
,解得
α=2
β=-1

∴α=2,β=-1.
点评:本题考查了向量的数乘和坐标运算、向量相等,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市有7条南北向街道,5条东西向街道.图中共有m个矩形,从A点走到B点最短路线的走法有n种,则m,n的值分别为(  )
A、m=90,n=210
B、m=210,n=210
C、m=210,n=792
D、m=90,n=792

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且cos2C+3cosC=1,c=
7
,又S△ABC=
3
3
2

(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+a,
(1)当a=-2时,求不等式f(x)>1的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,且经过点M(-
3
1
2
),圆C2
的直径C1的长轴.如图,C是椭圆短轴端点,动直线AB过点C且与圆C2交于A,B两点,CD垂直于AB交椭圆于点D.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)求△ABD面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比数列,当n≥11时,an>0.
(Ⅰ)求证:当n≥11时,{an}成等差数列;
(Ⅱ)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)cosx.
(Ⅰ)若x∈[0,
π
2
],求f(x)的取值范围;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,满足a3+a5=26,S9=153,递增的等比数列{bn}中,满足b2•b5=128.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设?x∈N*,试比较Sn,bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=x-2y,其中实数x,y满足
x+y≥2
2x-y≤4
y≤4
,则z的最大值等于
 

查看答案和解析>>

同步练习册答案