精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(x+
π
3
)cosx.
(Ⅰ)若x∈[0,
π
2
],求f(x)的取值范围;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)利用三角函数中的恒等变换应用可求得f(x)=sin(2x+
π
3
)+
3
2
,利用x∈[0,
π
2
],可求得2x+
π
3
∈[
π
3
3
],从而可求得f(x)的取值范围;
(Ⅱ)依题意可求得sin(2A+
π
3
)=0,A为锐角,可知A=
π
3
,b=2,c=3,利用余弦定理可求得a=
7
,继而可求得sinB及cosB的值,利用两角差的余弦可得cos(A-B)的值.
解答: 解:(Ⅰ)f(x)=(sinx+
3
cosx)cosx
=sinxcosx+
3
cos2x

=
1
2
sin2x+
3
2
cos2x+
3
2

=sin(2x+
π
3
)+
3
2
….(4分)
x∈[0,
π
2
]

2x+
π
3
∈[
π
3
3
]
-
3
2
≤sin(2x+
π
3
)≤1

f(x)∈[0, 1+
3
2
]
.                        ….(7分)
(Ⅱ)由f(A)=sin(2A+
π
3
)+
3
2
=
3
2
,得sin(2A+
π
3
)=0,
又A为锐角,故A=
π
3
,又b=2,c=3,
∴a2=4+9-2×2×3×cos
π
3
=7,解得a=
7
.    ….(10分)
a
sinA
=
b
sinB
,得sinB=
3
7
,又b<a,从而B<A,cosB=
2
7

cos(A-B)=cosAcosB+sinAsinB=
1
2
2
7
+
3
2
3
7
=
5
7
14
…(14分)
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的单调性与值域,考查正弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
①“若A∪B=B,则A?B”;
②“若b≤1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
③“若y=f(x)是奇函数,则f(0)=0”的否命题;
④“若x>y>1,则logx3<logy3”的逆命题.
其中真命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形,直线l:y=x+m与轨迹C交于不同的两点P和Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在常数m,使
OP
OQ
=0
?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AB
=(2,5)
AC
=(3,4)
AD
=(1,6)
,且
AC
AB
AD
,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在凸四边形ABCD中,C,D为定点,CD=
3
,A,B为动点,满足AB=BC=DA=1.
(Ⅰ)写出cosC与cosA的关系式;
(Ⅱ)设△BCD和△ABD的面积分别为S和T,求S2+T2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶在坐标原点,焦点F(0,c)(c>0)到直线y=2x的距离是
5
10

(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线y=kx+1(k≠0)与抛物线C交于A,B两点,设线段AB的中垂线与y轴交于点P(0,b),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)现有编号分别为1,2,3的三个不同的基本题和一道附加题,甲同学从这三个基本题中一次随机抽取两道题,每题做对做错及每题被抽到的概率是相等的.
(1)用符号(x,y)表示事件“抽到的两题基本题的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来.
(2)求甲同学所抽取的两道基本题的编号之和小于4的概率.
(3)甲同学在做完两道基本题之后,又做一道附加题,做对基本题每题加5分,做对附加题加10分,做错都得0分,求甲同学得分不低于15分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为函数f(x)=sinπx的图象上的一个最高点,Q为函数g(x)=cosπx的图象上的一个最低点,则|PQ|最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x2-2x≤0},N={x|
3+x
1-x
≤0
},U=R,则图中阴影部分表示的集合是
 

查看答案和解析>>

同步练习册答案