精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶在坐标原点,焦点F(0,c)(c>0)到直线y=2x的距离是
5
10

(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线y=kx+1(k≠0)与抛物线C交于A,B两点,设线段AB的中垂线与y轴交于点P(0,b),求b的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用焦点F(0,c)(c>0)到直线y=2x的距离是
5
10
,求出c,即可求抛物线C的方程;
(Ⅱ)直线y=kx+1(k≠0)与抛物线C联立,消去y,求出线段AB的中点,可得线段AB的垂直平分线方程,令x=0,得b=k2+2,即可求b的取值范围.
解答: 解:(Ⅰ)∵焦点F(0,c)(c>0)到直线y=2x的距离是
5
10

c
5
=
5
10

∴c=
1
2

∴抛物线C的方程为x2=2y;
(Ⅱ)直线y=kx+1(k≠0)与抛物线C联立,消去y整理得x2-2kx-2=0.
设A(x1,y1),B(x2,y2),则x1+x2=2k,
∴线段AB的中点为Q(k,k2+1),
∴线段AB的垂直平分线方程为y-(k2+1)=-
1
k
(x-k)
在上述方程中令x=0,得b=k2+2≥2.
∴b的取值范围是[2,+∞).
点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查学生的计算能力,确定线段AB的垂直平分线方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题说法正确的是(  )
A、命题p:“存在x∈R,sinx+cosx=
3
”,则¬p是假命题
B、“a=1”是“函数f(x)=cos2ax-sin2ax的周期T=π”的充分必要条件
C、命题“存在x∈R,使得x2+x+1=0”的否定是:“对任意x∈R,x2+x+1≥0”
D、命题“若tanα≠1,则α≠
π
4
”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+a,
(1)当a=-2时,求不等式f(x)>1的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比数列,当n≥11时,an>0.
(Ⅰ)求证:当n≥11时,{an}成等差数列;
(Ⅱ)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)cosx.
(Ⅰ)若x∈[0,
π
2
],求f(x)的取值范围;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所经过的定点F恰好是中心在原点的椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)点A的坐标为(-2,1),M为椭圆C上任意一点,求|MF|+|MA|的最大值;
(Ⅲ)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,满足a3+a5=26,S9=153,递增的等比数列{bn}中,满足b2•b5=128.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设?x∈N*,试比较Sn,bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρ(sinθ-cosθ)=a与曲线ρ=2cosθ-4sinθ相交于A,B两点,若|AB|=2
3
,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x1
x1+1
=
x2
x2+3
=
x3
x3+5
=…
xn
xn+2n-1
,且x1+x2+…x2014=2014,则x1=
 

查看答案和解析>>

同步练习册答案