【题目】用系统抽样法从200名职工中抽取容量为20的样本,将200名职工从1至200编号,按编号顺序平均分成20组(1~10号,11~20号,…,191…200号),若第15组中抽出的号码为147,则第一组中按此抽签方法确定的号码是__________.
科目:高中数学 来源: 题型:
【题目】执行如图的程序框图,当n≥2,n∈Z时,fn(x)表示fn﹣1(x)的导函数,若输入函数f1(x)=sinx﹣cosx,则输出的函数fn(x)可化为( )
A. sin(x+ )
B. sin(x﹣ )??
C.﹣ sin(x+ )
D.﹣ sin(x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101﹣150为轻度污染;151﹣200为中度污染;201~300为重度污染;>300为严重污染. 一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:
(Ⅰ)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差;
(Ⅱ)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣m|﹣|x+3m|(m>0). (Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)对于任意实数x,t,不等式f(x)<|2+t|+|t﹣1|恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上是增函数,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
则当x∈[2,+∞)时,
x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数
即,f(2)=4+a>0
解得﹣4<a≤4
故选:C.
【点睛】
本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.
【题型】单选题
【结束】
10
【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com