精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:+=1(a>b>0),e= , 其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 , 且(其中λ>1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求实数λ的值.

【答案】解:(I)由条件可知c=1,a=2,故b2=a2﹣c2=3,
椭圆的标准方程是
(Ⅱ)由,可知A,B,F三点共线,设A(x1 , y1),B(x2 , y2),
若直线AB⊥x轴,则x1=x2=1,不合题意.
当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).
,消去y得(3+4k2)x2﹣8k2x+4k2﹣12=0.①
由①的判别式△=64k4﹣4(4k2+3)(4k2﹣12)=144(k2+1)>0.
因为
所以=,所以k2=
将k2=代入方程①,得4x2﹣2x﹣11=0,
解得x=
又因为=(1﹣x1 , ﹣y1),=(x2﹣1,y2),
,解得
【解析】(I)由条件可知c=1,a=2,由此能求出椭圆的标准方程.
(Ⅱ)由 , 可知A,B,F三点共线,设A(x1 , y1),B(x2 , y2),直线AB⊥x轴,则x1=x2=1,不合意题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由 , 得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出实数λ的值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a32,前3项和S3.

(1){an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

【答案】1an.2Tn2n1.

【解析】试题分析:(1)根据等差数列的基本量运算解出,代入公式算出等差数列的通项公式;(2)计算出等比数列的首项和公比,代入求和公式计算.

试题解析:

(1)设{an}的公差为d,由已知得

解得a1=1,d

故{an}的通项公式an=1+,即an.

(2)由(1)得b1=1,b4a15=8.

设{bn}的公比为q,则q3=8,从而q=2,

故{bn}的前n项和Tn=2n-1.

点睛:本题考查等差数列的基本量运算求通项公式以及等比数列的前n项和,属于基础题. 在数列求和中,最常见最基本的求和就是等差数列、等比数列中的求和,这时除了熟练掌握求和公式外还要熟记一些常见的求和结论,再就是分清数列的项数,比如题中给出的,以免在套用公式时出错.

型】解答
束】
20

【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,B,BC;③测量∠C,AC,BC;④测量∠AC,B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为 , 则三棱锥A﹣BCD的外接球的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=
(Ⅰ)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A、B两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为AB.

(1)求直线PAPB的方程;

(2)求过P点的圆C的切线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系中的原点O为极点x轴正半轴为极轴的极坐标系中已知曲线的极坐标方程为ρ.

(1)将曲线的极坐标方程化为直角坐标方程;

(2)过极点O作直线l交曲线于点PQ|OP|=3|OQ|,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为x(单位:元)。

)将y表示为x的函数;

)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

同步练习册答案