精英家教网 > 高中数学 > 题目详情
在△ABC中,已知A=60°,b=4,c=5,则sinB+sinC=   
【答案】分析:由cosA,b及c的值,利用余弦定理求出a的值,然后由sinA,a,b及c的值分别求出sinB和sinC的值,即可求出sinB+sinC的值.
解答:解:由A=60°,b=4,c=5,
根据余弦定理a2=b2+c2-2bccosA得:
a2=16+25-2×4×5×=21,
解得:a=,又sinA=,b=4,c=5,
根据正弦定理==得:
sinB===,sinC===
则sinB+sinC=+=
故答案为:
点评:此题考查了正弦定理,以及余弦定理.熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案