精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成的角.
(1)证明略(2)BD与平面ADMN所成的角为30°
(1) ∵N是PB的中点,PA=PB,

∴AN⊥PB.∵∠BAD=90°,∴AD⊥AB.
∵PA⊥平面ABCD,∴PA⊥AD.
∵PA∩AB=A,∴AD⊥平面PAB,∴AD⊥PB.              4分
又∵AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM.                         7分
(2) 连接DN,
∵PB⊥平面ADMN,
∴∠BDN是BD与平面ADMN所成的角,                 10分
在Rt△BDN中,
sin∠BDN===,                            12分
∴∠BDN=30°,
即BD与平面ADMN所成的角为30°.                       14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确的是(   )
A.球面上的四个不同点,一定不在同一平面内
B.球面上两点的球面距离,是连结这两点的线段的长
C.球面上两点的球面距离,是过这两点的大圆弧长
D.用不过球心的平面截球,球心和截面圆心的连线垂直于截面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,
BE∥CF,∠BCF=∠CEF=90°,AD=,EF=2.
(1)求证:AE∥平面DCF;
(2)当AB的长为何值时,二面角A—EF—C的大小为60°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P—CD—B为45°.
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PCD;
(3)设AD=2,CD=2,求点A到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示, 

求图中三角形(正四面体的截面)的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

桌子上放着一个长方体和圆柱(如图1-2-30),下列图1-2-31所示三幅图分别是_______.

图1-2-30

图1-2-31

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

边长为5的正方形EFGH是圆柱的轴截面,求从点E沿圆柱的侧面到相对顶点G的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面平面是夹在两平行平面间的两条线段,内,内,点分别在上,且.求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥PABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.
(1)使∠PED=90°;
(2)使∠PED为锐角. 证明你的结论.

查看答案和解析>>

同步练习册答案