精英家教网 > 高中数学 > 题目详情
(2013•绵阳二模)已知关于x的方程-2x2+bx+c=0,若b,c∈{0,1,2,3},记“该方程有实数根x1,x2且满足-1≤x1≤x2≤2”为事件A,则事件A发生的概率为(  )
分析:基本事件总数n=4×4=16.①当b=0时,满足条件的基本事件有3个;②当b=1时,满足条件的基本事件有4个;③当b=2时,满足条件的基本事件有4个;④当b=3时,满足条件的基本事件有3个.由此能求出事件A发生的概率.
解答:解:基本事件总数n=4×4=16.
①当b=0时,
c=0,2x2=0成立;c=1,2x2=1,成立;c=2,2x2=2,成立;
c=3,2x2=3,不成立.
满足条件的基本事件有3个;
②当b=1时,
c=0,2x2-x=0,成立;c=1,2x2-x=1,成立;c=2,2x2-x-2=0,成立;
c=3,2x2-x-3=0,成立.
满足条件的基本事件有4个;
③当b=2时,
c=0,2x2-2x=0,成立;c=1,2x2-2x-1=0,成立;c=2,2x2-2x-2=0,成立;
c=3,2x2-2x-3=0,成立.
满足条件的基本事件有4个;
④当b=3时,
c=0,2x2-3x=0,成立;c=1,2x2-3x-1=0,成立;c=2,2x2-3x-2=0,成立;
c=3,2x2-3x-3=0,不成立.
满足条件的基本事件有3个.
∴满足条件的基本事件共有:3+4+4+3=14个.
∴事件A发生的概率为p=
14
16
=
7
8

故选C.
点评:本题考查概率的求法,是基础题.解题时要认真审题,仔细解答,注意列举法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)我们把离心率之差的绝对值小于
1
2
的两条双曲线称为“相近双曲线”.已知双曲线
x2
4
-
y2
12
=1
与双曲线
x2
m
-
y2
n
=1
是“相近双曲线”,则
n
m
的取值范围是
[
4
21
4
5
]∪[
5
4
21
4
]
[
4
21
4
5
]∪[
5
4
21
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知△ABC的面积S满足3≤S≤3
3
,且
AB
BC
=6
AB
BC
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知函数f(x)=
13
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求曲线C上任意一点处的切线的斜率的取值范围;
(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;
(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)若loga(a2+1)<loga2a<0,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案