精英家教网 > 高中数学 > 题目详情
10.等差数列{an},{bn}的前n项分别为Sn和Tn,若$\frac{{S{\;}_n}}{T_n}$=$\frac{4n+1}{3n-1}$,则$\frac{a_7}{b_7}$=$\frac{53}{38}$.

分析 利用等差数列的性质可得:$\frac{a_7}{b_7}$=$\frac{{S}_{13}}{{T}_{13}}$.

解答 解:由等差数列的性质可得:$\frac{a_7}{b_7}$=$\frac{\frac{13({a}_{1}+{a}_{13})}{2}}{\frac{13({b}_{1}+{b}_{13})}{2}}$=$\frac{{S}_{13}}{{T}_{13}}$=$\frac{4×13+1}{3×13-1}$=$\frac{53}{38}$,
故答案为:$\frac{53}{38}$.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设a,b∈R,函数f(x)=ex-alnx-a,其中e是自然对数的底数,曲线y=f(x)在点(1,f(1))处的切线方程为(e-1)x-y+b=0.
(1)求实数a,b的值;
(2)求证:函数y=f(x)存在极小值;
(3)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{e^x}{x}$-lnx-$\frac{m}{x}$≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.执行下边的程序框图,若输入的x的值为1,则输出的y的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合P={2,3a},Q={a,b},若P∩Q={1},则P∪Q 等于(  )
A.{2,0}B.{2,1,0}C.{3,2,0}D.{3,2,1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.反证法证明三角形的内角中至少有一个不小于60°,应假设三角形中三个内角都小于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人射击一次击中目标概率为$\frac{3}{5}$,经过3次射击,记X表示击中目标的次数,则方差D(X)=(  )
A.$\frac{18}{25}$B.$\frac{6}{25}$C.$\frac{3}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(x+ay)6展开式中x3y3的系数为-160,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=7,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.同时掷3枚硬币,最多有2枚正面向上的概率是(  )
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案