精英家教网 > 高中数学 > 题目详情
3.已知二次函数f(x)=ax2+bx+c经过点(1,0)和(0,-3),若f(x+2)=f(2-x)
求(1)f(x)的解析式;
(2)当x取何值时f(x+1)>0.

分析 (1)由二次函数的对称轴,以及二次函数经过的点,列出方程组,求出a、b、c的值即可;
(2)根据二次函数的性质,当开口向下时,在对称轴右侧y随x的增大而减小,即x>1;然后利用抛物线与x轴的交点问题求出抛物线与x轴的交点坐标,再找出函数图象在x轴上方所对应的自变量的取值范围即可.

解答 解:(1)f(x+2)=f(2-x)可知二次函数的对称轴为x=2.
二次函数f(x)=ax2+bx+c经过点(1,0)和(0,-3),
可得:$\left\{\begin{array}{l}\frac{b}{-2a}=2\\ a+b+c=0\\ c=-3\end{array}\right.$
解得a=-1,b=4,c=-3
所以二次函数解析式为:f(x)=-x2+4x-3;
(2)由f(x+1)>0,可得-(x+1)2+4x+4-3>0,
即:x2-2x<0.
解得x∈(0,2).

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.检查甲、乙两厂的100瓦电灯泡的生产质量,分别抽取20只灯泡,检查如下:
瓦数 94 96 98 100 102 104 106 
甲厂个数 
 乙厂个数
求:哪个厂的生产情况比较稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,P为底面ABCD上一动点,如果P到点A1的距离等于P到直线CC1的距离,那么点P的轨迹所在的曲线是(  )
A.直线B.C.抛物线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三角形中,a=6,tanB=$\sqrt{7}$,若$\frac{a}{2RsinC}$=$\sqrt{2}$,R为外接圆的半径,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2Asin(ωx+φ)cos(ωx+φ)+2Asin2(ωx+φ)-A(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求f(x)的解析式;
(2)若A是锐角三角形的最大内角,求f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$\sqrt{sinx+cosx}$+lgsin2x+$\sqrt{9-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-x+1.
(1)求f(x)的单调区间和极值;
(2)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-mx2+mx+3m在(0,1)内有极大值,无极小值,则(  )
A.m<0B.m<3C.0<m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是(  )
A.男医生B.男护士C.女医生D.女护士

查看答案和解析>>

同步练习册答案