分析 由a=6,若$\frac{a}{2RsinC}$=$\sqrt{2}$,可求得a,c的值,由tanB=$\sqrt{7}$,可求得sinB,再由余弦定理可求b的值,由正弦定理可求sinA,从而可求sinC的值.
解答 解:∵a=6,$\frac{a}{2RsinC}$=$\sqrt{2}$,R为外接圆的半径,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,可得:$\frac{sinA}{sinC}=\sqrt{2}$,a=$\sqrt{2}c$,解得c=3$\sqrt{2}$.
∵tanB=$\sqrt{7}$,∴sinB=$\sqrt{7}$cosB,则B为锐角,两边平方整理可得:cosB=$\frac{\sqrt{2}}{4}$,从而可得sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{14}}{4}$.
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{54-{b}^{2}}{36\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,可解得:b=6.
∴由正弦定理可得:sinA=sinB=$\frac{\sqrt{14}}{4}$.
∴sinC=$\frac{sinA}{\sqrt{2}}$=$\frac{\frac{\sqrt{14}}{4}}{\sqrt{2}}$=$\frac{\sqrt{7}}{4}$.
点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式的应用,熟练使用相关公式,定理及推论是解题的关键,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{5}{3}$,15] | B. | [$\frac{5}{3}$,15) | C. | [$\frac{5}{3}$,5) | D. | (5,15) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com