精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2Asin(ωx+φ)cos(ωx+φ)+2Asin2(ωx+φ)-A(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求f(x)的解析式;
(2)若A是锐角三角形的最大内角,求f(A)的值域.

分析 (1)先利用倍角公式对函数解析式化简整理求得f(x)=$\sqrt{2}$Asin(2ωx+2φ-$\frac{π}{4}$),由函数图象观察可知A,由周期公式得ω,由($\frac{π}{3}$,2)在函数图象上,又|φ|<$\frac{π}{2}$,可得φ,从而可求f(x)的解析式.
(2)根据A的范围确定2x-$\frac{π}{6}$的范围,进而根据正弦函数的单调性求得函数的最大和最小值,答案可得.

解答 解:(1)f(x)=2Asin(ωx+φ)cos(ωx+φ)+2Asin2(ωx+φ)-A
=Asin(2ωx+2φ)-Acos(2ωx+2φ)
=$\sqrt{2}$Asin[(2ωx+2φ)-$\frac{π}{4}$]
=$\sqrt{2}$Asin(2ωx+2φ-$\frac{π}{4}$);
由函数图象观察可知,$\sqrt{2}$A=2,可解得:A=$\sqrt{2}$,T=$\frac{2π}{2ω}$=4($\frac{7π}{12}$-$\frac{π}{3}$),可解得:ω=1.
由($\frac{π}{3}$,2)在函数图象上,可得:2=$\sqrt{2}$Asin(2×$\frac{π}{3}$+2φ-$\frac{π}{4}$),可得:2×$\frac{π}{3}$+2φ-$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈Z.
又|φ|<$\frac{π}{2}$,故可解得:φ=$\frac{π}{24}$.
故f(x)的解析式为:f(x)=2sin(2x-$\frac{π}{6}$).
(2)由已知有A∈[$\frac{π}{3}$,$\frac{π}{2}$),
∴$\frac{π}{2}$≤2A-$\frac{π}{6}$<$\frac{5π}{6}$.
∴1<2sin(2A-$\frac{π}{6}$)≤2.
即f(A)的取值范围是(1,2].

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的周期性及其求法,两角和公式的化简求值.考查了学生综合运用所学知识解决问题的能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四边形BCC1B1是边长为6的正方形,直线AB与平面ACC1A1所成的角的正切值为3,点D为棱AA1上的动点,且AD>DA1
(1)当AD为何值时,CD⊥平面B1C1D?
(2)当AD=2$\sqrt{3}$时,求二面角B1-DC-C1的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若椭圆C上的一动点到右焦点的最短距离为$2-\sqrt{2}$,且右焦点到直线$x=\frac{a^2}{c}$的距离等于短半轴的长.已知点P(4,0),过P点的直线l与椭圆C交于M,N两点,点T与点M关于x轴对称.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围;
(Ⅲ)证明:直线TN恒过某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,AB⊥BC,若BD⊥AC且BD交AC于点D,BD=2,则$\overrightarrow{BD}$•$\overrightarrow{BC}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简求值:sin61°+sin62°+sin63°+…+sin689°+sin690°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c经过点(1,0)和(0,-3),若f(x+2)=f(2-x)
求(1)f(x)的解析式;
(2)当x取何值时f(x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求曲线y=6-x和y=$\sqrt{8x}$,y=0围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a>0,函数f(x)=$\frac{e^x}{{{x^2}+a}}$.
(1)若a=$\frac{5}{9}$,求函数f(x)的单调区间;
(2)当x=$\frac{1}{2}$时,函数f(x)取得极值,证明:对于任意的${x_1},{x_2}∈[\frac{1}{2},\frac{3}{2}]$,|f(x1)-f(x2)|≤$\frac{3-e}{3}\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从集合{1,2,3,4,5}中任取两个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有(  )
A.18条B.20条C.25条D.10条

查看答案和解析>>

同步练习册答案