精英家教网 > 高中数学 > 题目详情
13.化简求值:sin61°+sin62°+sin63°+…+sin689°+sin690°.

分析 由cos6α+sin6α=1-3cos2αsin2α,原式由诱导公式可化为:t=44-$\frac{3}{4}$(sin22°+sin24°+…+sin288°)+($\frac{1}{8}$+1),根据诱导公式和sin2α+cos2α=1即可求得2t的值,即可得解.

解答 解:∵cos6α+sin6α=(cos2α+sin2α)3-(3cos4αsin2α+3cos2αsin4α)=1-3cos2αsin2α
∴sin61°+sin62°+sin63°+…+sin689°+sin690°
=(cos61°+sin61°)+(cos62°+sin62°)+…+(cos644°+sin644°)+(sin645°+sin690°)
=(1-3cos21°sin21°)+(1-3cos22°sin22°)+…+(1-3cos244°sin244°)+(sin645°+sin690°)
=44-$\frac{3}{4}$(sin22°+sin24°+…+sin288°)+($\frac{1}{8}$+1)
令t=44-$\frac{3}{4}$(sin22°+sin24°+…+sin288°)+($\frac{1}{8}$+1)
2t=88-$\frac{3}{4}$(sin22°+sin24°+…+sin288°+sin288°+sin286°+…+sin22°)+2×$\frac{9}{8}$,
∴t=44-$\frac{3}{4}×22$+$\frac{9}{8}$=$\frac{229}{8}$.

点评 本题主要考查了诱导公式,同角三角函数关系式的应用,考查了计算能力和转化思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.复平面内有A、B、C三点,点A对应的复数是3+i,向量$\overrightarrow{AC}$对应的复数是-2-4i.向量$\overrightarrow{BC}$对应的复数是-4-i,求B点对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{bn},{cn},已知b1=3,c1=5,bn+1=$\frac{{c}_{n}+4}{2}$,cn+1=$\frac{{b}_{n}+4}{2}$(n∈N*
(Ⅰ)设an=cn-bn,求数列{an}的通项公式
(Ⅱ)求证:对任意n∈N*,bn+cn为定值
(Ⅲ)设Sn为数列{cn}的前n项和,若对任意n∈N*,都有p•(Sn-4n)∈[1,3],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-2,0),F2(2,0),离心率为$\frac{\sqrt{6}}{3}$.过焦点F2的直线l(斜率不为0)与椭圆C交于A,B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当四边形MF1NF2为矩形时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.解方程sinx=lgx的实根个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2Asin(ωx+φ)cos(ωx+φ)+2Asin2(ωx+φ)-A(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求f(x)的解析式;
(2)若A是锐角三角形的最大内角,求f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,A,B都是锐角,sinA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分别是BF、CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中错误的是(  )
A.AC∥平面BEFB.B、C、E、F四点不可能共面
C.若EF⊥CF,则平面ADEF⊥平面ABCDD.平面BCE与平面BEF可能垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对k∈Z,设-sin(2kπ-θ)与cos(2kπ-θ)是方程2x2+($\sqrt{2}$+1)x+5m=0的两根,求:
(1)m的值;
(2)$\frac{sinθ}{1+cot(-θ)}$+$\frac{cos(-θ)}{1+tan(-θ)}$的值.

查看答案和解析>>

同步练习册答案