精英家教网 > 高中数学 > 题目详情
3.复平面内有A、B、C三点,点A对应的复数是3+i,向量$\overrightarrow{AC}$对应的复数是-2-4i.向量$\overrightarrow{BC}$对应的复数是-4-i,求B点对应的复数.

分析 利用复数与向量的对应关系、复数的运算法则即可得出.

解答 解:∵点A对应的复数是3+i,向量$\overrightarrow{AC}$对应的复数是-2-4i.
∴点C所对应的复数为-2-4i+(3+i)=1-3i.
又向量$\overrightarrow{BC}$对应的复数是-4-i,
∴B点对应的复数=1-3i-(-4-i)=5-2i.

点评 本题考查了复数与向量的对应关系、复数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.给出一下四个命题(  )
①平面α外的一条直线l上有两个不同点到平面α的距离相等,则直线l平行于平面α
②平面α外有三个不共线的点到面α的距离相等,则经过这三个点的平面平行于平面α
③空间中垂直于同一直线的两直线可以不平行
④空间中垂直于同一平面的两个平面可以平行
其中真命题有(  )
A.①②③④B.①②④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(sinx+cosx)=sinxcosx,则f(cos30°)=-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C经过点A(2,0)、B(1,-$\sqrt{3}$),且圆心C在直线y=x上.
(1)求圆C的方程;
(2)过点(1,$\frac{\sqrt{3}}{3}$)的直线l截圆所得弦长为2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{{\sqrt{3}}}{2}$,它的一个顶点恰好在抛物线x2=8y的准线上.
(1)求椭圆C的标准方程;
(2)点P(2,$\sqrt{3}$),Q(2,-$\sqrt{3}$)在椭圆上,A,B是椭圆上位于直线PQ两侧的动点.
(i)若直线AB的斜率为$\frac{{\sqrt{3}}}{6}$,求四边形APBQ面积的最大值;
(ii)当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四边形BCC1B1是边长为6的正方形,直线AB与平面ACC1A1所成的角的正切值为3,点D为棱AA1上的动点,且AD>DA1
(1)当AD为何值时,CD⊥平面B1C1D?
(2)当AD=2$\sqrt{3}$时,求二面角B1-DC-C1的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求证:ln$\root{4}{2n+1}$<$\sum_{i=1}^{n}$$\frac{i}{4{i}^{2}-1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)成为M函数:①对任意的x∈[0,1]恒有f(x)≥0;②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立,则下列函数不是M函数的是(  )
A.f(x)=x2B.f(x)=2x-1C.f(x)=ln(x2+1)D.f(x)=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简求值:sin61°+sin62°+sin63°+…+sin689°+sin690°.

查看答案和解析>>

同步练习册答案