精英家教网 > 高中数学 > 题目详情
8.解方程sinx=lgx的实根个数是(  )
A.1B.2C.3D.4

分析 方程sinx=lgx的实根个数即函数y=sinx与函数y=lgx的交点的个数,作函数图象,由数形结合求解即可.

解答 解:方程sinx=lgx的实根个数即函数y=sinx与函数y=lgx的交点的个数,
作函数y=sinx与函数y=lgx的图象如下,

故方程sinx=lgx的实根个数是3,
故选C.

点评 本题考查了方程的根与函数的零点的关系应用及数形结合的思想应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{{\sqrt{3}}}{2}$,它的一个顶点恰好在抛物线x2=8y的准线上.
(1)求椭圆C的标准方程;
(2)点P(2,$\sqrt{3}$),Q(2,-$\sqrt{3}$)在椭圆上,A,B是椭圆上位于直线PQ两侧的动点.
(i)若直线AB的斜率为$\frac{{\sqrt{3}}}{6}$,求四边形APBQ面积的最大值;
(ii)当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x2-x+15,且|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若(1+ax)(1+x)5展开式中含x2的系数为15,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知在△ABC中,D为边AC上一点,AB=AD=4,AC=6,若△ABC的外心恰在线段BD上,则BC=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简求值:sin61°+sin62°+sin63°+…+sin689°+sin690°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC是边长为2的正三角形,点P为△ABC内一点,且$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=0,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=-$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值(  )
A.恒为正数B.恒为负数C.恒为0D.可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(π-ωx)cosωx(ω>0)的最小正周期为π.
(1)求ω的值
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,$\frac{π}{16}$]上的最小值.

查看答案和解析>>

同步练习册答案