分析 (1)由诱导公式,倍角公式化简函数解析式,由三角函数的周期性及其求法即可得解.
(2)由函数y=Asin(ωx+φ)的图象变换规律可得函数解析式:g(x)=$\frac{1}{2}$sin4x,由正弦函数的图象和性质即可求值.
解答 解:(1)f(x)=sin(π-ωx)cosωx=sinωxcosωx=$\frac{1}{2}$sin2ωx.
∵T=$π=\frac{2π}{2ω}$,
∴可解得:ω=1.
(2)由(1)可得函数解析式为:f(x)=$\frac{1}{2}$sin2x.
将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数解析式为:y=g(x)=f(2x)=$\frac{1}{2}$sin4x.
∵0≤x≤$\frac{π}{16}$时,0≤4x≤$\frac{π}{4}$,
∴0≤sin4x≤$\frac{\sqrt{2}}{2}$,
∴0≤g(x)≤$\frac{\sqrt{2}}{4}$,
∴g(x)在此区间内的最小值为0.
点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的周期性及其求法,利用同角三角函数间的关系式可以化简三角函数式(1)化简的标准有:第一,尽量使函数种类最少,次数最低,而且尽量化成积的形式;第二,能求出值的要求出值;第三,根号内的三角函数式尽量开出.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ①与④ | D. | ③与④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2015)<[f(2015e)-f(2015)]ln2015 | B. | f(2015)>[f(2015e)-f(2015)]ln2015 | ||
| C. | f(2015)<[ef(2015)-f(2015)]ln2015 | D. | f(2015)>[ef(2015)-f(2015)]ln2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com