1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã·Ö±ðΪF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®¹ý½¹µãF2µÄÖ±Ïßl£¨Ð±Âʲ»Îª0£©ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪD£¬OÎª×ø±êÔ­µã£¬Ö±ÏßOD½»ÍÖÔ²ÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µ±ËıßÐÎMF1NF2Ϊ¾ØÐÎʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨I£©ÓÉÒÑÖª¿ÉµÃ£º$\left\{\begin{array}{l}{c=2}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ¼´¿ÉµÃ³ö£»
£¨II£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïßl·½³ÌΪy=k£¨x-2£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x3£¬y3£©£¬N£¨-x3£¬-y3£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨1+3k2£©x2-12k2x+12k2-6=0£¬£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¿ÉµÃ£ºÏß¶ÎABµÄÖеãD$£¨\frac{6{k}^{2}}{1+3{k}^{2}}£¬\frac{-2k}{1+3{k}^{2}}£©$£¬¿ÉµÃÖ±ÏßODµÄ·½³ÌΪ£ºx+3ky=0£¨k¡Ù0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢£¬½âµÃ${y}_{3}^{2}$=$\frac{2}{1+3{k}^{2}}$£¬x3=-3ky3£®ÀûÓÃËıßÐÎMF1NF2Ϊ¾ØÐΣ¬¿ÉµÃ$\overrightarrow{{F}_{2}M}•\overrightarrow{{F}_{2}N}$=0£¬½â³ö¼´¿É£®

½â´ð ½â£º£¨I£©ÓÉÒÑÖª¿ÉµÃ£º$\left\{\begin{array}{l}{c=2}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa2=6£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£»
£¨II£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬
ÉèÖ±Ïßl·½³ÌΪy=k£¨x-2£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x3£¬y3£©£¬N£¨-x3£¬-y3£©£®
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\\{y=k£¨x-2£©}\end{array}\right.$£¬»¯Îª£¨1+3k2£©x2-12k2x+12k2-6=0£¬
¡àx1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$£¬y1+y2=k£¨x1+x2-4£©=$\frac{-4k}{1+3{k}^{2}}$£¬
¡àÏß¶ÎABµÄÖеãD$£¨\frac{6{k}^{2}}{1+3{k}^{2}}£¬\frac{-2k}{1+3{k}^{2}}£©$£¬
¡àÖ±ÏßODµÄ·½³ÌΪ£ºx+3ky=0£¨k¡Ù0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{x+3ky=0}\\{{x}^{2}+3{y}^{2}=6}\end{array}\right.$£¬½âµÃ${y}_{3}^{2}$=$\frac{2}{1+3{k}^{2}}$£¬x3=-3ky3£®
¡ßËıßÐÎMF1NF2Ϊ¾ØÐΣ¬
¡à$\overrightarrow{{F}_{2}M}•\overrightarrow{{F}_{2}N}$=0£¬
¡à£¨x3-2£¬y3£©•£¨-x3-2£¬-y3£©=0£¬
¡à$4-{x}_{3}^{2}-{y}_{3}^{2}$=0£¬
¡à$4-\frac{2£¨9{k}^{2}+1£©}{1+3{k}^{2}}$=0£¬½âµÃk=$¡À\frac{\sqrt{3}}{3}$£¬
¹ÊÖ±Ïß·½³ÌΪy=$¡À\frac{\sqrt{3}}{3}£¨x-2£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½¡¢¾ØÐεÄÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÔ²C¾­¹ýµãA£¨2£¬0£©¡¢B£¨1£¬-$\sqrt{3}$£©£¬ÇÒÔ²ÐÄCÔÚÖ±Ïßy=xÉÏ£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©¹ýµã£¨1£¬$\frac{\sqrt{3}}{3}$£©µÄÖ±Ïßl½ØÔ²ËùµÃÏÒ³¤Îª2$\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶Ô¶¨ÒåÔÚ[0£¬1]ÉÏ£¬²¢ÇÒͬʱÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄº¯Êýf£¨x£©³ÉΪMº¯Êý£º¢Ù¶ÔÈÎÒâµÄx¡Ê[0£¬1]ºãÓÐf£¨x£©¡Ý0£»¢Úµ±x1¡Ý0£¬x2¡Ý0£¬x1+x2¡Ü1ʱ£¬×ÜÓÐf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©³ÉÁ¢£¬ÔòÏÂÁк¯Êý²»ÊÇMº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x2B£®f£¨x£©=2x-1C£®f£¨x£©=ln£¨x2+1£©D£®f£¨x£©=x2+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$£¬ÈôÍÖÔ²CÉϵÄÒ»¶¯µãµ½ÓÒ½¹µãµÄ×î¶Ì¾àÀëΪ$2-\sqrt{2}$£¬ÇÒÓÒ½¹µãµ½Ö±Ïß$x=\frac{a^2}{c}$µÄ¾àÀëµÈÓڶ̰ëÖáµÄ³¤£®ÒÑÖªµãP£¨4£¬0£©£¬¹ýPµãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£¬µãTÓëµãM¹ØÓÚxÖá¶Ô³Æ£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Çó$\overrightarrow{OM}•\overrightarrow{ON}$µÄȡֵ·¶Î§£»
£¨¢ó£©Ö¤Ã÷£ºÖ±ÏßTNºã¹ýij¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô£¨1+ax£©£¨1+x£©5Õ¹¿ªÊ½Öк¬x2µÄϵÊýΪ15£¬Ôòa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¡÷ABCÖУ¬AB¡ÍBC£¬ÈôBD¡ÍACÇÒBD½»ACÓÚµãD£¬BD=2£¬Ôò$\overrightarrow{BD}$•$\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼òÇóÖµ£ºsin61¡ã+sin62¡ã+sin63¡ã+¡­+sin689¡ã+sin690¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÇóÇúÏßy=6-xºÍy=$\sqrt{8x}$£¬y=0Χ³ÉµÄͼÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑ֪ǰ9ÏîÖ®ºÍΪ27£¬Ôòa2+a4+a6+a8µÈÓÚ£¨¡¡¡¡£©
A£®16B£®12C£®20D£®15

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸