精英家教网 > 高中数学 > 题目详情
(2013•枣庄二模)已知A,B是△ABC的两个内角,向量
a
=(
2
cos
A+B
2
,sin
A-B
2
),且|
a
|=
6
2
,则tanA•tanB=(  )
分析:由题意可得 
a
2
=2cos2
A+B
2
+sin2
A-B
2
=
6
4
,再利用二倍角公式化简可得 2cos(A+B)-cos(A-B)=0,再利用两角和差的三角公式化简求得cosAcosB=3sinAsinB,再由同角三角函数的基本关系求得tanA•tanB的值.
解答:解:∵A,B是△ABC的两个内角,向量
a
=(
2
cos
A+B
2
,sin
A-B
2
),且|
a
|=
6
2

a
2
=2cos2
A+B
2
+sin2
A-B
2
=
6
4
,∴1+cos(A+B)+
1-cos(A-B)
2
=
3
2

化简可得 2cos(A+B)-cos(A-B)=0,∴2cosAcosB-2sinAsinB-(cosAcosB+sinAsinB)=0,
∴cosAcosB=3sinAsinB,∴tanA•tanB=
1
3

故选B.
点评:本题主要考查两角和差的三角公式、二倍角公式以及同角三角函数的基本关系,向量的模的求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知函数f(x)=x2-
ln|x|
x
,则函数y=f(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点到一条渐近线的距离等于焦距的
1
4
,则此双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是
1-
π
4
1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)集合A={(x,y)|y=x,x∈R},B={(x,y)|x2+y2=1,x,y∈R},则集合A∩B中元素的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知i是虚数单位,若纯虚数z满足(2-i)z=4+2ai,则实数a的值为(  )

查看答案和解析>>

同步练习册答案