精英家教网 > 高中数学 > 题目详情
13.已知集合$A=\left\{{x|{x^2}-x-2≤0}\right\},B=\left\{{x|\frac{1}{2}<{{({\frac{1}{2}})}^x}<4}\right\},C=\left\{{x|x≥m}\right\}$.
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若A∪C=C,求实数m的取值范围.

分析 (Ⅰ)先化简集合A,B,再根据集合的交集,补集,并集的运算法则计算即可,
(Ⅱ)由A∪C=C,得到A⊆C,继而求出m的范围.

解答 解:(Ⅰ)∵x2-x-2≤0,
∴(x+1)(x-2)≤0,
∴-1≤x≤2,
∴A=[-1,2],
∴∁RA=(-∞,-1)∪(2,+∞),
∵$\frac{1}{2}$<$(\frac{1}{2})^{x}$<4=$(\frac{1}{2})^{-2}$,
∴-4<x<1,
∴B=(-4,1),
∴A∩B=[-1,1),(∁RA)∪B=(-∞,1)∪(2,+∞);
(Ⅱ)A∪C=C,
∴A⊆C,
∵C={x|x≥m}=[m,+∞),
∴m≥-1
∴实数m的取值范围为[-1,+∞)

点评 此题考查了交、并、补集的混合运算以及集合之间的关系,熟练掌握交、并、补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义max{a,b}表示实数a,b中的较大的数.已知数列{an}满足a1=a(a>0),a2=1,an+2=$\frac{2max\{{a}_{n+1,}2\}}{{a}_{n}}$(n∈N),若a2015=4a,记数列{an}的前n项和为Sn,则S2015的值为7254.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式(各式均有意义)不正确的个数为(  )
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,定点A(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)在椭圆上,F1,F2为椭圆的左、右焦点,定直线l的方程为x=-4,过椭圆上一点P作切线m与l交于T点,过P且垂直于直线m的直线n交F1F2于点M.
(1)求椭圆的方程;
(2)设椭圆的离心率为e,求证:$\frac{{F}_{1}M}{P{F}_{1}}$=e;
(3)证明PM为∠F1PF2的平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平行四边形ABCD中,下列结论中错误的是(  )
A.$\overrightarrow{AB}=\overrightarrow{DC}$B.$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$C.$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$D.$\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x+1}{x-1}$(x≠1).
(Ⅰ)证明f(x)在(1,+∞)上是减函数;
(Ⅱ)令g(x)=lnf(x),试讨论g(x)=lnf(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,底面边长AB=3m,BC=4m,高BB1=5m,求:
(1)写出B1D、BC1在平面ABCD内的射影;
(2)对角线DB1与平面ABCD所成角的大小;
(3)BC1与平面ABCD所成角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2-3x+2)
(1)若f(1)<2,求a的取值范围;
(2)若a=1,求满足$(\frac{1}{2})^{t}$<f(3)的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数在(-∞,+∞)上为单调函数的是(  )
A.y=x2-xB.y=|x|C.y=x3+2xD.y=sinx

查看答案和解析>>

同步练习册答案