分析 (1)当n≥2时利用an=Sn-Sn-1,进而计算可知an-an-1=3,利用a2,a4,a9成等比数列可知a1=1,进而计算可得结论;
(2)通过(1)可知anan+1=(3n-2)(3n+1),分n为奇数、偶数两种情况讨论即可.
解答 解:(1)∵Sn=$\frac{1}{6}$(an+1)(an+2),
∴当n≥2时,Sn-1=$\frac{1}{6}$(an-1+1)(an-1+2),
两式相减得:6an=(${{a}_{n}}^{2}$+3an)-(${{a}_{n-1}}^{2}$+3an-1),
又∵数列{an}的各项均为正数,
∴an-an-1=3,
又∵S1=$\frac{1}{6}$(a1+1)(a1+2),
∴${{a}_{1}}^{2}$-3a1+2=0,即a1=1或a1=2,
又∵a2,a4,a9成等比数列,
∴$({a}_{1}+9)^{2}$=(a1+3)(a1+24),
解得:a1=1,
∴数列{an}是首项为1,公差为3的等差数列,
∴an=1+3(n-1)=3n-2;
(2)∵an=3n-2,
∴anan+1=(3n-2)(3n+1),
当n为偶数时,Tn=a1a2-a2a3+a3a4-a4a5+…+an-1an-anan+1
=a2(a1-a3)+a4(a3-a5)+…+an(an-1-an+1)
=-6(a2+a4+…+an)
=-6×$\frac{\frac{n}{2}(4+3n-2)}{2}$
=-$\frac{9{n}^{2}+6n}{2}$;
当n为奇数时,Tn=Tn-1+anan+1
=-$\frac{9(n-1)^{2}+6(n-1)}{2}$+(3n-2)(3n+1)
=$\frac{9}{2}$n2+3n-$\frac{7}{2}$;
综上所述,Tn=$\left\{\begin{array}{l}{-\frac{9{n}^{2}+6n}{2},}&{n为偶数}\\{\frac{9{n}^{2}+6n-7}{2},}&{n为奇数}\end{array}\right.$.
点评 本题考查数列的通项及前n项和,考查分类讨论的思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{2}{3}$] | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$] | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{({\frac{3}{2}})^{-4}},1)$ | B. | $({({\frac{3}{2}})^{-4}},1)$ | C. | $(1,{({\frac{3}{2}})^4})$ | D. | $(1,{({\frac{3}{2}})^4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com