精英家教网 > 高中数学 > 题目详情

【题目】为考察某种药物预防疾病的效果,进行动物试验,调查了 105 个样本,统计结果为:服药的共有 55 个样本,服药但患病的仍有 10 个样本,没有服药且未患病的有 30个样本.

(1)根据所给样本数据完成 列联表中的数据;

(2)请问能有多大把握认为药物有效?

(参考公式:独立性检验临界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合计

服药

没服药

合计

【答案】(1)

患病

不患病

合计

服药

10

45

55

没服药

20

30

50

合计

30

75

105

(2)97.5%.

【解析】分析:(1)由所给数据可得服药但没有病的人,没有服药且患病的从而可得到联表;(2)利用公式求得与邻界值比较,即可得到结论.

详解:(1)解依据题意得,服药但没有病的45人,没有服药且患病的20可列下列联表

(2)假设服药和患病没有关系,则的观测值应该很小,

由独立性检验临界值表可以得出,由97.5%的把握药物有效;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,其中[x]表示不超过x的最大整数,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,若在x轴上的截距为,且

求直线的交点坐标;

已知直线经过的交点,且在y轴上截距是在x轴上的截距的2倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方形ABCDAD=2CD=4MN分别为ADBC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD

1)求证:直线CM⊥面DFN

2)求点C到平面FDM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.

参考格式:,其中.

下面的临界值仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即,其中abc分别为内角ABC的对边.,则面积S的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆一中为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的赛,两队各由4名选手组成,每局两队各派一名选手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是直线上的动点,定点 的中点,动点满足.

(1)求点的轨迹的方程

(2)过点的直线交轨迹两点,上任意一点,直线两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若是函数的极值点,求的值及函数的极值;

(2)讨论函数的单调性.

查看答案和解析>>

同步练习册答案