精英家教网 > 高中数学 > 题目详情
已知命题p:“方程
x2
9-k
+
y2
k-1
=1
表示焦点在x轴上的椭圆”,命题q:“方程
x2
2-k
+
y2
k
=1
表示双曲线”.
(1)若p是真命题,求实数k的取值范围;
(2)若q是真命题,求实数k的取值范围;
(3)若“p∨q”是真命题,求实数k的取值范围.
分析:(1)p是真命题,则9-k>k-1>0;(2)q是真命题,则(2-k)k<0;(3)若“p∨q”是真命题,则p、q至少一个是真命题,分类讨论即可.
解答:解:(1)p:“方程
x2
9-k
+
y2
k-1
=1
表示焦点在x轴上的椭圆”,是真命题,则9-k>k-1>0,∴1<k<5;
(2)q:“方程
x2
2-k
+
y2
k
=1
表示双曲线”是真命题,则(2-k)k<0,∴k<0或k>2
(3)若“p∨q”是真命题,则p、q至少一个是真命题,即一真一假或全为真
1<k<5
0≤k≤2
k≤1或k≥5
k<0或k>2
1<k<5
k<0或k>2

∴1<k≤2或k<0或k≥5或2<k<5
∴k<0或k>1.
点评:本题考查命题真假的运用,考查解不等式,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+(m-3)x+1=0无实根,命题Q:方程x2+
y2m-1
=1
是焦点在y轴上的椭圆.若¬P与P∧Q同时为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知命题p:关于x的函数f(x)=2x2+ax+3在[1,+∞)上是增函数;命题q:关于x的方程x2-ax+4=0有实数根.若pVq为真命题,p∧q为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2m
-
y2
m-2
=1
 表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m-3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知命题p:方程(x-1)(x-2)=0的根是x=1;

命题q:方程(x-1)(x-2)=0的根是2,

则复合命题“p或q”是


  1. A.
    方程(x-1)(x-2)=0的根是x=1或方程(x-1)(x-2)=0的根是x=2
  2. B.
    方程(x-1)(x-2)=0的根是x=1或x=2
  3. C.
    方程(x-1)(x-2)=0的根或是x=1或是x=2
  4. D.
    以上均不对

查看答案和解析>>

同步练习册答案