精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C以原点为中心,左焦点F的坐标是(﹣1,0),长轴长是短轴长的 倍,直线l与椭圆C交于点A与B,且A、B都在x轴上方,满足∠OFA+∠OFB=180°;

(1)求椭圆C的标准方程;
(2)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

【答案】
(1)解:设椭圆的标准方程为: (a>b>0),

由题意可知:2a= 2b,即a= b,

由c=1,则a2=b2+c2=b2+1,

代入求得:a2=2,b2=1,

椭圆C的方程为:


(2)解:存在一个定点M(﹣2,0),无论∠OFA如何变化,直线l总经过此定点

证明:由OFA+∠OFB=180°,则B关于x轴的对称点B1在直线AF上.

设A(x1,y1),B(x2,y2),B1(x2,﹣y2

设直线AF方程:y=k(x+1),代入

得:(k2+ )x2+2k2x+k2﹣1=0,…(13分)

由韦达定理可知:x1+x2= ,x1x2=

由直线AB的斜率kAB=

AB的方程:y﹣y1= (x﹣x1),

令y=0,得:x1﹣y1

y1=k(x1+1),y2=k(x2+1),

x= = = = =﹣2,

∴直线l总经过定点M(﹣2,0).


【解析】(1)由题意可知设椭圆的标准方程为: (a>b>0),2a= 2b,即a= b,代入求得:a2=2,b2=1,即可求得椭圆C的标准方程;(2)B关于x轴的对称点B1在直线AF上.设直线AF方程:y=k(x+1),代入椭圆方程,由韦达定理及直线的斜率公式,代入由x= = ,此能证明直线l总经过定点M(﹣2,0).
【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x轴:,焦点在y轴:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;
(2)若函数y=f(x)有两个极值点x1 , x2(x1<x2),求a的取值范围并证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax(a>0).
(1)当a=2时,解关于x的不等式﹣3<f(x)<5;
(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是(
A.(0, ]
B.[ ]
C.[ ]∪{ }
D.[ )∪{ }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.
(1)求证:PA⊥BC;
(2)求此三棱锥的全面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数y=f(x)的图象恰好经过k个格点,则称函数y=f(x)为k阶格点函数.已知函数:①y=x2;②y=2sinx,③y=πx﹣1;④y=cos(x+ ).其中为一阶格点函数的序号为(注:把你认为正确论断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算的值的一个程序框图,则判断框内应填入的条件是( )

A.
B.i>1005
C.
D.i>1006

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ. (Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

同步练习册答案