精英家教网 > 高中数学 > 题目详情

若函数的定义域为,且满足为 奇函数,为偶函数,则下列说法中一定正确的有        
(1)的图像关于直线对称
(2)的周期为 
(3)  
(4)上只有一个零点

解析试题分析:因为,函数的定义域为,且满足为 奇函数,为偶函数,所以f(-x+1)=-f(x+1) .......(1);f(x-1)=f(-x-1).......(2)。
由(1) 得f(x+1)=-f(-x+1) ,故
由(2) 得f(x-1)=f(-x-1),故的图像关于直线对称;(1)正确。由此可知,函数要吗没零点,要吗不只一个零点;(4)不正确。
由①令-x+1=t得:f(t)=-f(2-t)…………③;②令-x-1=t得:f(t)= f(-2-t)………④;
由③、④得f(2-t)=- f(-2-t)由此令-2-t=m得f(4+m) =-f(m),
所以,f(8+m) =-f(m+4)= f(m),函数f(x)的周期为8,(2)不正确。
所以,(3)正确。
综上知,答案为(1)(3)
考点:本题主要考查函数的奇偶性、周期性、对称性。
点评:中档题,本题比较典型,综合考查了函数的奇偶性、周期性、对称性,有一定难度,需要灵活运用“代换的方法”,寻求所需条件、结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知,且,则实数等于______________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数为减函数,则a的取值范围是          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数f(x)=lg(x2-3x)的单调递增区间是        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设奇函数的定义域为,若当时, 的图象如右图,则不等式的解是         

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数为奇函数,则=           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知当时,的值为3,则当时,的值为      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的单调增区间为           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的单调递减区间           

查看答案和解析>>

同步练习册答案