精英家教网 > 高中数学 > 题目详情
13.若α是锐角,且sin(α-$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,则cosα=$\frac{2\sqrt{2}-3}{6}$.

分析 根据同角的三角形函数关系以及两角和的余弦公式计算即可.

解答 解:∵α是锐角,
∴-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{π}{6}$,
∵sin(α-$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,
∴cos(α-$\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}$,
∴cosα=(α-$\frac{π}{3}$+$\frac{π}{3}$)=cos(α-$\frac{π}{3}$)cos$\frac{π}{3}$-sin(α-$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{2\sqrt{2}}{3}$×$\frac{1}{2}$-$\frac{\sqrt{3}}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{2}-3}{6}$,
故答案为:$\frac{2\sqrt{2}-3}{6}$.

点评 本题考查了同角的三角形函数关系以及两角和的余弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年广东清远三中高二上学期月考一数学(文)试卷(解析版) 题型:解答题

等差数列的前项和为,等比数列的公比为,满足.

(1)求数列,通项

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2017届四川巴中市高中高三毕业班10月零诊理数试卷(解析版) 题型:解答题

在等差数列中,.

(1)求数列的通项公式;

(2)设数列是首项为,公比为的等比数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量$\overrightarrow m$=(cosA,cosC),$\overrightarrow n$=(c,a),$\overrightarrow p$=(2b,0),且$\overrightarrow m$•($\overrightarrow n$-$\overrightarrow p$)=0
(1)求角A的大小;
(2)当|x|≤A时,求函数f(x)=sinxcosx+sinxsin(x-$\frac{π}{6}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow a$和$\overrightarrow b$的夹角为120°,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=5,则(2$\overrightarrow a$-$\overrightarrow{b}$)•$\overrightarrow b$=-35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α为第二象限角且sin(π+α)=-$\frac{1}{2}$),则cos(2π-α)的值等于-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)的值是(  )
A.$\frac{13}{18}$B.$\frac{13}{22}$C.$\frac{3}{22}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是$ρcos(θ-\frac{π}{4})=2\sqrt{2}$,圆C的极坐标方程是ρ=4sinθ.
(Ⅰ)求l与C交点的极坐标;
(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是$\left\{\begin{array}{l}x=\root{3}{t}+a\\ y=\frac{b}{2}\root{3}{t}+1\end{array}\right.$(t为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x+4),4≤x≤12}\end{array}\right.$,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是$\frac{256}{27}$.

查看答案和解析>>

同步练习册答案