相关习题
 0  247689  247697  247703  247707  247713  247715  247719  247725  247727  247733  247739  247743  247745  247749  247755  247757  247763  247767  247769  247773  247775  247779  247781  247783  247784  247785  247787  247788  247789  247791  247793  247797  247799  247803  247805  247809  247815  247817  247823  247827  247829  247833  247839  247845  247847  247853  247857  247859  247865  247869  247875  247883  266669 

科目: 来源: 题型:解答题

2.已知a>0,a≠1,设p:函数y=loga(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

1.设全集U={x|x≥0},集合P={1},则∁UP=(  )
A.[0,1)∪(1,+∞)B.(-∞,1)C.(-∞,1)∪(1,+∞)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

20.若函数f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4解集为(-1,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知a∈(0,π),cos(a+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,则tan2a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的各点横坐标缩短为原来的$\frac{1}{2}$,所得曲线的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).

查看答案和解析>>

科目: 来源: 题型:解答题

17.对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“Q类数列”.
(1)若an=3n,bn=3•5n,n∈N*,数列{an}、{bn}是否为“Q类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“Q类数列”,则数列{an+an+1}也是“Q类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2015项的和.并判断{an}是否为“Q类数列”,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知$\overrightarrow{a}$•$\overrightarrow{c}$-$\overrightarrow{b}$•$\overrightarrow{c}$=-|$\overrightarrow{a}$-$\overrightarrow{b}$|•|$\overrightarrow{c}$|≠0,且$\overrightarrow{a}$和$\overrightarrow{b}$不垂直,则$\overrightarrow{a}$-$\overrightarrow{b}$与($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$(  )
A.相等B.方向相同C.方向相反D.方向相同或相反

查看答案和解析>>

科目: 来源: 题型:解答题

15.设数列Sn为数列{an}的前n项和,且Sn=2an-2n+1,n=1,2,3…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={log_{\frac{a_n}{n+1}}}$2,数列{bn}的前n项和Bn,若存在整数m,使得对任意n∈N*且n≥2都有B3n-Bn>$\frac{m}{20}$成立,求m的最大值
(Ⅲ)设Cn=$\frac{a_n}{n+1}$-1,证明:$\frac{1}{{C}_{2}}$+$\frac{1}{{C}_{3}}$+…+$\frac{1}{{C}_{n+1}}$<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(-1)=-3.

查看答案和解析>>

科目: 来源: 题型:填空题

13.复数z=$\frac{25}{3-4i}$的虚部为4.

查看答案和解析>>

同步练习册答案