相关习题
 0  247710  247718  247724  247728  247734  247736  247740  247746  247748  247754  247760  247764  247766  247770  247776  247778  247784  247788  247790  247794  247796  247800  247802  247804  247805  247806  247808  247809  247810  247812  247814  247818  247820  247824  247826  247830  247836  247838  247844  247848  247850  247854  247860  247866  247868  247874  247878  247880  247886  247890  247896  247904  266669 

科目: 来源: 题型:解答题

11.如图,有一块半径为2a(a>0)的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.记AD长为x,梯形周长为y.
(Ⅰ)求y关于x的函数解析式,并求出定义域;
(Ⅱ)由于钢板有特殊需要,要求CD长不小于$\frac{7}{2}a$,在此条件下,求梯形周长y的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则函数在x=2处的切线斜率为17.

查看答案和解析>>

科目: 来源: 题型:选择题

9.执行如图所示的程序框图,若输出S的值为$\frac{2014}{2015}$,则判断框内可填入的条件是(  )
A.k>2013B.k>2014C.k>2015D.k>2016

查看答案和解析>>

科目: 来源: 题型:填空题

8.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则f(x)的最大值是$\sqrt{5}$,cosθ=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在△ABC中,角A、B、C所对的边分别是a、b、c,边c=$\frac{7}{2}$,且C=60°,又△ABC的面积为$\frac{3\sqrt{3}}{2}$,则a+b=$\frac{11}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知f(x)=ax-lnx,a∈R.
(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.函数f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)若a=-1,求函数y=g(x)图象过点p(1,1)的切线方程;
(2)若?x0∈(0,+∞),使关于x的不等式2f(x)≥g′(x)+2成立,求实数a取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=alnx+$\frac{2{a}^{2}}{x}$(a≠0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=1,求证:对于定义域内的任意一个x,都有f(x)≥3-x.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=x3-3ax2+2bx=的单调递减区间为(-$\frac{1}{3}$,1),
(1)求a,b的值;
(2)若不等式f(x)≥k2+7k在区间[-2,2]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:
47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49
37 35 34 43 46 36 38 40 39 32 48 33 40 34
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数“不满意”人数合计
16
14
合计30
(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?(参考数据请看15题中的表)

查看答案和解析>>

同步练习册答案