相关习题
 0  247801  247809  247815  247819  247825  247827  247831  247837  247839  247845  247851  247855  247857  247861  247867  247869  247875  247879  247881  247885  247887  247891  247893  247895  247896  247897  247899  247900  247901  247903  247905  247909  247911  247915  247917  247921  247927  247929  247935  247939  247941  247945  247951  247957  247959  247965  247969  247971  247977  247981  247987  247995  266669 

科目: 来源: 题型:填空题

4.已知函数$f(x)={cos^2}\;\frac{x}{2}-{sin^2}\;\frac{x}{2}\;+sin\;x$,若${x_0}\;∈({0\;,\;\frac{π}{4}})$且$f({x_0})=\frac{{4\sqrt{2}}}{5}$,则cos2x0=$\frac{24}{25}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在△ABC中,$\overrightarrow{AB}=(2\;,\;\;-1)$,$\overrightarrow{AC}=(x\;,\;\;3)$,其中x为实数.若△ABC为直角三角形,则x=$\frac{3}{2}$或4.

查看答案和解析>>

科目: 来源: 题型:解答题

2.(1)若log67=a,log34=b,求log127的值.
(2)若函数f(x)=lg$\frac{1+{2}^{x}+{3}^{x}a}{3}$在(-∞,1]有意义,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=3ax+b的图象经过点A(1,3),记递增数列{an}满足an=log3f(n)(n∈N*),数列{an}的第1项,第2项,第5项成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{a_n}{2^n}$,Tn=b1+b2+…+bn,求Tn的前n项和.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$,则△APB的面积与△APC的面积之比为(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目: 来源: 题型:选择题

15.在△ABC中,sin2C≤(sinA-sinB)2+sinAsinB,则C的取值范围是(  )
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,π)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,π)

查看答案和解析>>

科目: 来源: 题型:选择题

14.化简$\sqrt{2+cos2-si{n^2}1}$的结果是(  )
A.-cos1B.cos 1C.$\sqrt{3}$cos 1D.$-\sqrt{3}cos1$

查看答案和解析>>

科目: 来源: 题型:选择题

13.与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{8}$=1B.$\frac{x^2}{3}$-$\frac{y^2}{12}$=1C.$\frac{y^2}{3}$-$\frac{x^2}{12}$=1D.$\frac{y^2}{2}$-$\frac{x^2}{8}$=1

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知数列{an}:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,…$\frac{1}{k}$,$\frac{2}{k-1}$,$\frac{3}{k-2}$,…,$\frac{k}{1}$,…,则:
(1)在这个数列中,若an是第3个值等于1的项,则n=13;
(2)a2015=31.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对边分别为a,b,c,且$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$.
(1)求角B的大小;
(2)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案