相关习题
 0  248068  248076  248082  248086  248092  248094  248098  248104  248106  248112  248118  248122  248124  248128  248134  248136  248142  248146  248148  248152  248154  248158  248160  248162  248163  248164  248166  248167  248168  248170  248172  248176  248178  248182  248184  248188  248194  248196  248202  248206  248208  248212  248218  248224  248226  248232  248236  248238  248244  248248  248254  248262  266669 

科目: 来源: 题型:填空题

19.在△ABC中,$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}$,DE∥BC,且与边AC相交于点E,△ABC的中线AM与DE相交于点N,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$,用$\overrightarrow a,\overrightarrow b$表示向量$\overrightarrow{ME}$=$-\frac{1}{2}\overrightarrow{a}-\frac{1}{4}\overrightarrow{b}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.不等式x2+(k-2)x+1≥0对x∈R恒成立,求实数k的取值范围[0,4].

查看答案和解析>>

科目: 来源: 题型:填空题

17.把函数y=cos(2x+$\frac{π}{3}$)图象向右平移$\frac{π}{2}$个单位长度,再把所有点的横坐标伸长到原来的两倍(纵坐标不变),所得函数图象的解析式为y=cos(x-$\frac{2π}{3}$).

查看答案和解析>>

科目: 来源: 题型:选择题

16.某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D点测得塔顶A的仰角为30°,则塔高为(  )
A.15米B.5米C.10米D.12米

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(-1,1),则$\overrightarrow a$•$\overrightarrow b$+${\overrightarrow b^2}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

14.设α∈(-$\frac{π}{2}$,0),cosα=$\frac{1}{2}$,则tan(α+$\frac{π}{6}$)=(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.某种产品的两种原料相继提价,因此,产品生产者决定根据这两种原料提价的百分比,对产品分两次提价,现在有三种提价方案:
方案甲:第一次提价p%,第二次提价q%;
方案乙:第一次提价q%,第二次提价p%;
方案丙:第一次提价$\frac{p+q}{2}$%,第二次提价$\frac{p+q}{2}$%.
其中p>q>0,比较上述三种方案,哪一种提价少?哪一钟提价多?

查看答案和解析>>

科目: 来源: 题型:填空题

12.若a、b是正常数,a≠b,x、y∈(0,+∞),则$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{y}$≥$\frac{{(a+b)}^{2}}{x+y}$,当且仅当$\frac{a}{x}$=$\frac{b}{y}$时上式取等号.利用以上结论,可以得到函数f(x)=$\frac{4}{x}$+$\frac{9}{1-2x}$(x∈(0,$\frac{1}{2}$))的最小值为17+12$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.函数y=x$\sqrt{1-{x}^{2}}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.动圆G与圆O1:x2+y2+2x=0外切,同时与圆O2:x2+y2-2x-8=0内切,设动圆圆心G的轨迹为Γ.
(1)求曲线Γ的方程;
(2)直线x=t(t>0)与曲线Γ相交于不同的两点M,N,以MN为直径作圆C,若圆C与y轴相交于两点P,Q,求△PQC面积的最大值;
(3)已知A1(-2,0),A2(2,0),直线l:y=kx+m与曲线Γ相交于A,B两点(A,B均不与A1,A2重合),且以AB为直径的圆过点A2,求证:直线l过定点,并求出该点坐标.

查看答案和解析>>

同步练习册答案