相关习题
 0  248295  248303  248309  248313  248319  248321  248325  248331  248333  248339  248345  248349  248351  248355  248361  248363  248369  248373  248375  248379  248381  248385  248387  248389  248390  248391  248393  248394  248395  248397  248399  248403  248405  248409  248411  248415  248421  248423  248429  248433  248435  248439  248445  248451  248453  248459  248463  248465  248471  248475  248481  248489  266669 

科目: 来源: 题型:选择题

13.在(1+x)n的展开式中,只有第4项的系数最大,则n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:选择题

12.i是虚数单位,若复数z满足iz=3+4i,则z等于(  )
A.4+3iB.4-3iC.-3+4iD.-3-4i

查看答案和解析>>

科目: 来源: 题型:解答题

11.2014年12月28日开始,北京市地铁按照里程分段计价.具体如下表:
乘坐地铁方案
(不含机场线)
6公里(含)内3元;
6公里至12公里(含)内4元;
12公里至22公里(含)内5元;
22公里至32公里(含)内6元;
32公里以上部分,每增加l元可乘坐20公里(含).
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为$\frac{1}{2}$;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图阴影部分的面积是(  )
A.e+$\frac{1}{e}$B.e+$\frac{1}{e}$-1C.e+$\frac{1}{e}$-2D.e-$\frac{1}{e}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.在长方体ABCD-A1B1C1D1中,E为DD1的中点.
(1)判断BD1与平面AEC的位置关系,并证明你的结论.
(2)若AB=BC=$\sqrt{3}$,CC1=2,求异面直线AE、BD1所成的角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知数列{an}的通项公式为an=2n+(-1)n+1•(1+λn),其中是常数,n∈N*
(I)当a2=-1时,求λ的值;
(Ⅱ)数列{an}是否可能为等差数列?证明你的结论;
(Ⅲ)若对于任意n∈N*,都有an>0,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设m∈R,不等式mx2-(3m+1)x+2(m+1)>0的解集记为集合P.
(I)若P=(x|-1<x<2),求m的值;
(Ⅱ)当m>0时,求集合P;
(Ⅲ)若{x|-3<x<2}⊆P,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知△ABC为锐角三角形,a,b,c分别为角A,B,C所对的边,且$\sqrt{3}$a=2csinA.
(Ⅰ)求角C;
(Ⅱ)当c=2$\sqrt{3}$时,求:△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知数列{an}是首项为1,公比为q的等比数列.
(Ⅰ)证明:当0<q<1时,{an}是递减数列;
(Ⅱ)若对任意k∈N*,都有ak,ak+2,ak+1成等差数列,求q的值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设数列{an}的通项公式为an=3n(n∈N*).数列{bn}定义如下:对任意m∈N*,bm是数列{an}中不大于32m的项的个数,则b3=243;数列{bm}的前m项和Sm=$\frac{3}{8}({9^m}-1)$.

查看答案和解析>>

同步练习册答案