相关习题
 0  248440  248448  248454  248458  248464  248466  248470  248476  248478  248484  248490  248494  248496  248500  248506  248508  248514  248518  248520  248524  248526  248530  248532  248534  248535  248536  248538  248539  248540  248542  248544  248548  248550  248554  248556  248560  248566  248568  248574  248578  248580  248584  248590  248596  248598  248604  248608  248610  248616  248620  248626  248634  266669 

科目: 来源: 题型:选择题

1.已知函数$f(x)=a(x-\frac{1}{x})-2lnx(a∈R)$,g(x)=-$\frac{a}{x}$,若至少存在一个x0∈[1,e],使f(x0)>g(x0)成立,则实数a的范围为(  )
A.[$\frac{2}{e}$,+∞)B.(0,+∞)C.[0,+∞)D.($\frac{2}{e}$,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿 BD折起到△EBD的位置,使平面EBD⊥平面ABD
(Ⅰ)求证:AB⊥DE
(Ⅱ)若点F为 BE的中点,求三棱锥E-AFD的侧面积.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图程序框图中,则输出的A值是$\frac{1}{31}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知6件产品中有2件次品,今从中任取2件,在已知其中一件是次品的前提下,另一件也是次品的概率为(  )
A.$\frac{1}{15}$B.$\frac{1}{9}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.由于工业化城镇化的推进,大气污染日益加重,空气质量逐步恶化,雾霾天气频率增大,大气污染可引起心悸、胸闷等心脏病症状.为了解某市患心脏病是否与性别有关,在某医院心血管科随机的对入院50位进行调查得到了如下列联表:问有多大的把握认为是否患心脏病与性别有关.答(  )
患心脏病不患心脏病合计
20525
101525
合计302050
P(k2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
A.95%B.99%C.99.5%D.99.9%

查看答案和解析>>

科目: 来源: 题型:填空题

16.求值:$\frac{(1+tan22°)(1+tan23°)}{2}-\frac{{\sqrt{1+2sin610°cos430°}}}{sin250°+cos790°}$=3.

查看答案和解析>>

科目: 来源: 题型:选择题

15.由方程x2+y2-4tx-2ty+5t2-4=0(t为参数)所表示的一组圆的圆心轨迹是(  )
A.一个定点B.一个椭圆C.一条抛物线D.一条直线

查看答案和解析>>

科目: 来源: 题型:解答题

14.某高校的自主招生考试分为笔试和面试,笔试有语、数、外、综合共四个科目的考试,面试有时政评论、创新设计共两个项目的考核,笔试中至少通过3科才可进入面试,否则淘汰;面试中只通过一项可获得高考报考降分录取资格,两项都通过可获得保送资格.已知每位考生在笔试中通过每科考试的概率均为$\frac{2}{3}$,在面试中通过每项考核的概率均为$\frac{1}{2}$,且相互独立.
(1)求参加考试的某学生获得降分录取资格的概率;
(2)某中学选送了3名学生参加考试,其中获得降分录取和保送资格的人数之和记为ξ,求ξ的期望值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.把一个体积为64cm3、表面涂有红漆的正方体木块锯成64个体积为1cm3的小正方体,从中任取一块,则这一块有且只有一面涂有红漆的概率为$\frac{3}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=2-3log2x,g(x)=log2x.
(1)若函数$F(x)=g(\frac{1-x}{1+x})$,
①求F(x)的定义域,并判断F(x)的奇偶性;
②判断F(x)在其定义域内的单调性,并给出证明;
(2)求函数$M(x)=\frac{{f(x)+g(x)+|{f(x)-g(x)}|}}{2}$的最小值.

查看答案和解析>>

同步练习册答案