相关习题
 0  249781  249789  249795  249799  249805  249807  249811  249817  249819  249825  249831  249835  249837  249841  249847  249849  249855  249859  249861  249865  249867  249871  249873  249875  249876  249877  249879  249880  249881  249883  249885  249889  249891  249895  249897  249901  249907  249909  249915  249919  249921  249925  249931  249937  249939  249945  249949  249951  249957  249961  249967  249975  266669 

科目: 来源: 题型:解答题

11.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB于F,现将△ACD沿CD折起,折成二面角A-CD-B,连接AF,M,N分别为AD,BC的中点.
(1)求证:MN∥面AEF;
(2)当∠AEF=120°时,求二面角A-BD-E大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.解方程:
(1)3×|2x-1|-1=5;
(2)|x-|2x+1||=3;
(3)|x-2|+|x+5|=6;
(4)|x-5|+$\sqrt{(4-x)^{2}}$=1.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图所示,在三棱锥S-ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=2a,且SA⊥平面ABC,则点A到平面SBC的距离为(  )
A.$\frac{3a}{2}$B.$\frac{2\sqrt{21}}{7}$aC.$\frac{5a}{2}$D.$\frac{7a}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.若正三棱锥P-ABC的底面边长为2,侧面与底面所成的二面角为60°,求正三棱锥的高和体积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知3$\overrightarrow{OA}$+2$\overrightarrow{OB}$=(13,1),$\overrightarrow{OA}$-$\overrightarrow{OB}$=(1,-3).
(1)求向量$\overrightarrow{OA}$与$\overrightarrow{OB}$;
(2)设向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,求cosθ的值;
(3)以向量$\overrightarrow{OA}$与$\overrightarrow{OB}$为邻边作平行四边形OACB,求向量$\overrightarrow{OC}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知正三棱锥S-ABC的底面边长为a,各侧面的顶角为30°,D为侧棱SC的中点,截面△DEF过D且平行于AB,当△DEF周长最小时,则截得的三棱锥S-DEF的侧面积为$\frac{2+\sqrt{3}}{32}{a}^{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知四棱锥P-ABCD中,底面ABCD是平行四边形,点E,F在PC上,且PE:EF:FC=1:1:1,问在PB上是否存在一点M,使平面AEM∥平面BFD,并请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=ax2+|x-a|+b,a,b∈R.
(Ⅰ)若函数f(x)在[0,1]上单调递增,在[1,+∞)单调递减,求实数a的值;
(Ⅱ)若对任意的实数b∈[0,1]及任意的x∈[-3,3],不等式|f(x)|≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设锐角三角形ABC的三内角为A,B,C所对的边分别为a,b,c,函数f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x.
(Ⅰ)求f(A)的取值范围;
(Ⅱ)若f(A)=$\frac{1}{4}$,△ABC的面积为$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=3,则|$\overrightarrow{b}$|的最大值是$\sqrt{3}$;|$\overrightarrow{c}$|的取值范围是[1,3].

查看答案和解析>>

同步练习册答案