相关习题
 0  250561  250569  250575  250579  250585  250587  250591  250597  250599  250605  250611  250615  250617  250621  250627  250629  250635  250639  250641  250645  250647  250651  250653  250655  250656  250657  250659  250660  250661  250663  250665  250669  250671  250675  250677  250681  250687  250689  250695  250699  250701  250705  250711  250717  250719  250725  250729  250731  250737  250741  250747  250755  266669 

科目: 来源: 题型:填空题

10.已知$α∈(0,π),cos(α+\frac{π}{4})=\frac{3}{5}$,则tanα=$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知集合M?{0,1,2,3,4},M∩{0,1,2}={0,1}的集合M的个数是4.

查看答案和解析>>

科目: 来源: 题型:填空题

8.在平面直角坐标系xOy中,已知点A(0,2),B(0,1),D(t,0)(t>0),M为线段AD上的动点.若AM≤2BM恒成立,则正实数t的最小值为4.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)($\frac{2}{3}$)-2+(1-$\sqrt{2}$)0-($\frac{27}{8}$)${\;}^{\frac{2}{3}}$
(2)log34-log332+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,以Ox为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P、Q,已知点P的坐标为$(-\frac{3}{5},\frac{4}{5})$.
(Ⅰ)求$\frac{{2sinαcosα+2{{cos}^2}α}}{1+tanα}$的值;
(Ⅱ)若$\overrightarrow{OP}•\overrightarrow{OQ}=0$,求sinβ,cosβ,tanβ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.定义平面向量之间的一种运算(?)如下:对任意的$\overrightarrow a=(m,n),\overrightarrow b=(p,q)$,令$\overrightarrow a?\overrightarrow b=mq-np$,下面说法正确的序号为①③④.(把所有正确命题的序号都写上)
①若$\overrightarrow a,\overrightarrow b$共线,则$\overrightarrow a?\overrightarrow b=0$
②$\overrightarrow a?\overrightarrow b=\overrightarrow b?\overrightarrow a$
③对任意的$λ∈R,有(λ\overrightarrow a)?\overrightarrow b=λ(\overrightarrow a?\overrightarrow b)$
④${(\overrightarrow a?\overrightarrow b)^2}+{(\overrightarrow a•\overrightarrow b)^2}=|\overrightarrow a{|^2}|\overrightarrow b{|^2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.若sinθ$\sqrt{{{sin}^2}θ}$+cosθ$\sqrt{{{cos}^2}θ}$=-1$(θ≠\frac{kπ}{2},k∈Z)$,则θ是第几象限角(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=2\sqrt{2}$.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数).求曲线C上的点到直线l的距离的最大值及相应点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知直线x+y+m=0与圆x2+y2=2交于不同的两点A,B,O是坐标原点,若$\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OB}$且D在圆内,则实数m的取值范围是-1<m<1.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=|2x-1|+|2x+3|,且f(x)≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,求函数g(x)=2x2+$\frac{m}{x}({x>0})$的最小值.

查看答案和解析>>

同步练习册答案