精英家教网 > 高中数学 > 题目详情
10.已知$α∈(0,π),cos(α+\frac{π}{4})=\frac{3}{5}$,则tanα=$\frac{1}{7}$.

分析 利用已知条件求得$sin(α+\frac{π}{4})$,结合α∈(0,π),然后利用两角和的正切函数求解即可.

解答 解:∵$α∈(0,π),cos(α+\frac{π}{4})=\frac{3}{5}$,∴sin(α+$\frac{π}{4}$)=$\sqrt{1-{cos}^{2}(α+\frac{π}{4})}$=$\frac{4}{5}$,
tan(α+$\frac{π}{4}$)=$\frac{4}{3}$
∴tanα=tan(α+$\frac{π}{4}$-$\frac{π}{4}$)=$\frac{\frac{4}{3}-1}{1+\frac{4}{3}}$=$\frac{1}{7}$.
故答案为:$\frac{1}{7}$.

点评 本题考查同角三角函数间的基本关系,两角和的正切函数的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N*
(Ⅰ)设bn=an+1-an,证明:数列{bn}是等比数列;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(${\frac{1}{1+x}}$)=x,则函数f(x)=$\frac{1-x}{x},\{x|x≠0\}$(注明f(x)的定义域)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在两个变量y与x的回归模型中,分别选择了四个不同的模型,且它们的R2的值的大小关系为:R${\;}_{模型3}^{2}$<R${\;}_{模型4}^{2}$<R${\;}_{模型1}^{2}$<R${\;}_{模型2}^{2}$,则拟合效果最好的是(  )
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义平面向量之间的一种运算(?)如下:对任意的$\overrightarrow a=(m,n),\overrightarrow b=(p,q)$,令$\overrightarrow a?\overrightarrow b=mq-np$,下面说法正确的序号为①③④.(把所有正确命题的序号都写上)
①若$\overrightarrow a,\overrightarrow b$共线,则$\overrightarrow a?\overrightarrow b=0$
②$\overrightarrow a?\overrightarrow b=\overrightarrow b?\overrightarrow a$
③对任意的$λ∈R,有(λ\overrightarrow a)?\overrightarrow b=λ(\overrightarrow a?\overrightarrow b)$
④${(\overrightarrow a?\overrightarrow b)^2}+{(\overrightarrow a•\overrightarrow b)^2}=|\overrightarrow a{|^2}|\overrightarrow b{|^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是(  )
A.$\frac{b}{a}>\frac{c}{a}$B.c(b-a)>0C.ac(a-c)<0D.cb2<ab2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}为公差等于2的等差数列,a3=311,若其前m项和为m3,则m的值是(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是R上的偶函数,若对于x≥1,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2015)+f(2016)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.比较两数logax与2log2ax(1<a<2)的大小.

查看答案和解析>>

同步练习册答案