相关习题
 0  250779  250787  250793  250797  250803  250805  250809  250815  250817  250823  250829  250833  250835  250839  250845  250847  250853  250857  250859  250863  250865  250869  250871  250873  250874  250875  250877  250878  250879  250881  250883  250887  250889  250893  250895  250899  250905  250907  250913  250917  250919  250923  250929  250935  250937  250943  250947  250949  250955  250959  250965  250973  266669 

科目: 来源: 题型:填空题

11.命题“若x>y,则x2>y2”的否命题是若x≤y,则x2≤y2

查看答案和解析>>

科目: 来源: 题型:填空题

10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
(1)若a∥α且b∥α,则a∥b;
(2)如果平面α内的两条相交的直线a,b都平行于平面β,那么α∥β;
(3)如果a,b为异面直线,那么a,b所成的角θ的范围是0<θ<π;
(4)如果a,b为异面直线,那么过a,b外一点有且仅有一个平面α与a,b都平行;
上面命题中,所有假命题的序号是(1)(3)(4).

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知在△ABC中,存在唯一的点G,使得若$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,这个点G是△ABC的重心,那么在四边形ABCD中,是否存在唯一的点P,使得$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{0}$?若存在,请证明,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

8.欲寄出两封信,现有两个邮箱供选择,则两封信都投到一个邮箱的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.计算下列定积分,$\int_0^π{(cosx+2x)}$dx=π2

查看答案和解析>>

科目: 来源: 题型:填空题

6.集合Ma是由使f(x)=$\sqrt{x-{{log}_2}{a^2}}$的定义域为[3,+∞)的所有实数a的值组成,则集合Ma=$\left\{{-2\sqrt{2},\;2\sqrt{2}}\right\}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.圆$ρ=2sin(θ+\frac{π}{4})$的圆心坐标是(  )
A.$({1,\frac{π}{4}})$B.$({\frac{1}{2},\frac{π}{4}})$C.$({\sqrt{2},\frac{π}{4}})$D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目: 来源: 题型:填空题

4.高一年级下学期进行文理分班,为研究选报文科与性别的关系,对抽取的50名同学调查得到列联表如下,已知
P(k2≥3.84)≈0.05,(k2≥5.024)≈0.025,计算k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$≈4.848,则至少有95%的把握认为选报文科与性别有关.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定
点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB,CD不重合).
(Ⅰ)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(Ⅱ)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x)
(Ⅲ)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=x2+2xf′(1),则曲线y=f(x)在x=1处的切线方程为2x+y+1=0.

查看答案和解析>>

同步练习册答案