精英家教网 > 高中数学 > 题目详情
9.已知在△ABC中,存在唯一的点G,使得若$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,这个点G是△ABC的重心,那么在四边形ABCD中,是否存在唯一的点P,使得$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{0}$?若存在,请证明,若不存在,请说明理由.

分析 设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),P(x,y),利用$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{0}$,建立方程求出P的坐标即可.

解答 解:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),P(x,y),则
∵$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{0}$,
∴(x1-x,y1-y)+(x2-x,y2-y)+(x3-x,y3-y)+(x4-x,y4-y)=(0,0,0,0),
∴(x1+x2+x3+x4)-4x=0,(y1+y2+y3+y4)-4y=0,
∴x=$\frac{1}{4}$(x1+x2+x3+x4),y=$\frac{1}{4}$(y1+y2+y3+y4),
∴存在唯一的点P($\frac{1}{4}$(x1+x2+x3+x4),$\frac{1}{4}$(y1+y2+y3+y4),使得$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{0}$.

点评 本题考查向量知识的运用,考查类比推理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.计算:$\frac{lg5•lg8000+(lg{2}^{\sqrt{3}})^{2}}{lg600-\frac{1}{2}lg36-\frac{1}{2}lg0.01}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+0.1-2
(2)$\frac{lo{g}_{m}(2a)-lo{g}_{m}(2b)}{lo{g}_{m}a-lo{g}_{m}b}$(a,b>0,a≠b);
(3)(eln3+e${\;}^{\frac{1}{2}ln4}$)(eln3-e${\;}^{\frac{1}{2}}$ln4);
(4)$\frac{lo{g}_{27}16}{lo{g}_{3}8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=$\sqrt{3}$sin4x+cos4x.
(1)求它的周期,最大值,最小值;
(2)求它的单调递增区间;
(3)它可以由y=sinx的图象经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.高一年级下学期进行文理分班,为研究选报文科与性别的关系,对抽取的50名同学调查得到列联表如下,已知
P(k2≥3.84)≈0.05,(k2≥5.024)≈0.025,计算k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$≈4.848,则至少有95%的把握认为选报文科与性别有关.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=sin22x(x∈R)是(  )
A.最小正周期为$\frac{π}{2}$的偶函数B.最小正周期为$\frac{π}{2}$的奇函数
C.最小正周期为π的偶函数D.最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义[-1,1]上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)>0,则实数a的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cosα+cosβ=$\frac{1}{2},sinα+sinβ=\frac{1}{3}$,则cos(α-β)=$\frac{59}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线${C_1}:{x^2}+{(y-4)^2}=1$,曲线${C_2}:y=\frac{1}{2}{x^2}$,EF是曲线C1的任意一条直径,P是曲线C2上任一点,则$\overrightarrow{PE}•\overrightarrow{PF}$的最小值为6.

查看答案和解析>>

同步练习册答案