相关习题
 0  250914  250922  250928  250932  250938  250940  250944  250950  250952  250958  250964  250968  250970  250974  250980  250982  250988  250992  250994  250998  251000  251004  251006  251008  251009  251010  251012  251013  251014  251016  251018  251022  251024  251028  251030  251034  251040  251042  251048  251052  251054  251058  251064  251070  251072  251078  251082  251084  251090  251094  251100  251108  266669 

科目: 来源: 题型:解答题

10.已知函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$).
(1)证明f(x)为奇函数;
(2)若f(x)=ln(2+$\sqrt{5}$),求x的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数y=f(x)的图象在区间[a,b]上是连续不断的,且满足f(a)•f(b)>0,则函数f(x)在(a,b)内(  )
A.肯定没有零点B.至多有一个零点
C.可能有两个零点D.以上说法均不正确

查看答案和解析>>

科目: 来源: 题型:选择题

8.函数f(x)=$\frac{lgx}{\sqrt{2-x}}$的定义域为(  )
A.(0,2)B.(0,1)∪(1,2)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

7.若f(x)=x2-$\sqrt{2}$,则f[f($\sqrt{2}$)]=6-5$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知数列{an}的前n项和Sn与通项an满足Sn=$\frac{4}{3}$an-$\frac{8}{3}$.
(1)设bn=log2an,求数列{bn}的通项公式.
(2)设cn=$\frac{{b}_{n}}{({b}_{n}+1)^{2}{n}^{2}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知f(x)=loga$\frac{1-mx}{1+x}$(a>0,且a≠1,m≠-1)是定义在区间(-1,1)上的奇函数,
(1)求f(0)的值和实数m的值;
(2)判断函数f(x)在区间(-1,1)上的单调性,并说明理由;
(3)若f($\frac{1}{2}$)>0且f(b-2)+f(2b-2)>0成立,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知集含A={(x,y)|y=f(x)},B={(x,y)|x=a,y∈R},其中a为常数,则集合A∩B的元素有(  )
A.0个B.1个C.至多1个D.至少1个

查看答案和解析>>

科目: 来源: 题型:填空题

3.$\frac{\frac{\sqrt{3}}{3}+tan15°}{tan45°-\frac{\sqrt{3}}{3}tan15°}$的值是1.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,在正方体ABCD一A1B1C1D1中,取$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$作为基底.
(1)求$\overrightarrow{B{D}_{1}}$;
(2)若有M,N分别为边AD,CC1的中点,求$\overrightarrow{MN}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设数列{an}的前n项$\underset{之}{•}$$\underset{积}{•}$为Tn,且Tn=1-an,(n∈N*
(I)求a1,并证明数列{$\frac{1}{1-{a}_{n}}$}是等差数列;
(Ⅱ)设Sn=T${\;}_{1}^{2}$+T${\;}_{2}^{2}$+…+T${\;}_{n}^{2}$,求证:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).

查看答案和解析>>

同步练习册答案