相关习题
 0  250946  250954  250960  250964  250970  250972  250976  250982  250984  250990  250996  251000  251002  251006  251012  251014  251020  251024  251026  251030  251032  251036  251038  251040  251041  251042  251044  251045  251046  251048  251050  251054  251056  251060  251062  251066  251072  251074  251080  251084  251086  251090  251096  251102  251104  251110  251114  251116  251122  251126  251132  251140  266669 

科目: 来源: 题型:选择题

20.设正项等比数列{an}的前n项之积为Tn,且T14=128,则$\frac{1}{{a}_{7}}$+$\frac{1}{{a}_{8}}$的最小值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数$f(x)=\sqrt{3}sin(2x-\frac{π}{6})-2{sin^2}(x-\frac{π}{12})$.
(Ⅰ)求函数f(x)的周期及增区间;
(Ⅱ)若 $-\frac{π}{12}≤x≤\frac{π}{3}$,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

18.${(\frac{{\sqrt{x}}}{3}+\frac{3}{{\sqrt{x}}})^8}$展开式的常数项为70.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数f(x)=$\left\{{\begin{array}{l}1&{x>0}\\ 0&{x=0}\\{-1}&{x<0}\end{array}}$,g(x)=x2•f(x-1),则函数g(x)的递减区间是(  )
A.[0,+∞)B.[0,1)C.(-∞,1)D.(-1,1)

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知命题p:?x∈R,sinx≤1,则(  )
A.¬p:?x0∈R,sinx0≥1B.¬p:?x∈R,sinx≥1
C.¬p:?x0∈R,sinx0>1D.¬p:?x∈R,sinx>1

查看答案和解析>>

科目: 来源: 题型:选择题

15.设集合A={x∈N|x2-2x-3≤0},B={-1,1},则A∩B等于(  )
A.B.{1}C.{-1,1}D.{-1,0,1,2,3}

查看答案和解析>>

科目: 来源: 题型:填空题

14.如果f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”,给出下列命题:
①函数y=sinx具有“P(a)性质”;
②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;
③若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,则函数y=f(x)是周期函数;
④若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y=f(x)在(-2,-1)上单调递减,在(1,2)上单调递增;
其中正确的是①③④(写出所有正确命题的编号).

查看答案和解析>>

科目: 来源: 题型:选择题

13.定义在R上的函数f(x)周期是6,当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.337B.338C.1678D.2013

查看答案和解析>>

科目: 来源: 题型:选择题

12.“直线x-y+k=0与圆(x-1)2+y2=2有两个不同的交点”的充要条件是(  )
A.k∈(-3,1)B.k∈[-3,1]C.k∈(0,1)D.k∈(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

11.若命题p:?x0∈[-3,3],x02+2x0+1≤0,则对命题p的否定是(  )
A.?x∈[-3,3],x2+2x+1>0B.?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0
C.$?{x_0}∈({-∞,-3})∪({3,+∞}),{x_0}^2+2{x_0}+1≤0$D.$?{x_0}∈[{-3,3}],{x_0}^2+2{x_0}+1>0$

查看答案和解析>>

同步练习册答案