相关习题
 0  251638  251646  251652  251656  251662  251664  251668  251674  251676  251682  251688  251692  251694  251698  251704  251706  251712  251716  251718  251722  251724  251728  251730  251732  251733  251734  251736  251737  251738  251740  251742  251746  251748  251752  251754  251758  251764  251766  251772  251776  251778  251782  251788  251794  251796  251802  251806  251808  251814  251818  251824  251832  266669 

科目: 来源: 题型:解答题

18.如图,A、B两处各有一个电冰箱维修部,且相距6km,这两个维修部对相同项目的维修价格都相同,而且维修前后都有为用户运送冰箱的业务.由于车型不同,A维修部每公里运费是B维修部的$\frac{4}{3}$.现有一用户M,M到直线AB的距离为11km,如果用户M的电冰箱需要维修,且由维修部运送,那么用户M去A,B中的哪个维修部维修冰箱?为什么?

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=ax2-bx+1(a,b∈R).
(1)若函数f(x)的值域为[$\frac{3}{4}$,+∞),且f(x+1)=f(-x),求函数f(x)的解析式;
(2)设b=a+1,当0≤a≤1时,对任意x∈[0,2]都有m≥|f(x)|恒成立,求m的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两端点的连线互相垂直,且此焦点和长轴上较近的端点距离为4$\sqrt{3}$-2$\sqrt{6}$,则此椭圆方程为$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}的前n项和Sn ,点(n,$\frac{{S}_{n}}{n}$)在直线y=2x+1上,数列{bn}满足$\frac{{b}_{1}-1}{3}$+$\frac{{b}_{2}-1}{{3}^{2}}$+…+$\frac{{b}_{n}-1}{{3}^{n}}$=an(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)是否存在常数p(p≠-1),使数列{$\frac{{T}_{n}-n}{3({3}^{n}+p)}$}是等比数列?若存在,求出p的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别是F1,F2,离心率是e=$\frac{1}{2}$,P点在椭圆上,△PF1F2的内切圆面积最大值是$\frac{4}{3}$π.
(1)求椭圆方程;
(2)若A,B,C,D是椭圆上不重合的四个点,$\overrightarrow{{F}_{1}A}$∥$\overrightarrow{{F}_{1}C}$,$\overrightarrow{{F}_{1}B}$∥$\overrightarrow{{F}_{1}D}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$D=0,求:|$\overrightarrow{AC}$|+|$\overrightarrow{BD}$|的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

13.用[x]表示不超过x的最大整数,若函数y=kx-[x]恰好有三个零点,则实数k的取值范围是 (  )
A.($\frac{2}{3}$,2)B.($\frac{2}{3}$,$\frac{3}{4}$]∪[$\frac{3}{2}$,2)C.($\frac{2}{3}$,$\frac{4}{3}$]∪[$\frac{3}{2}$,2)D.($\frac{2}{3}$,1]∪[$\frac{4}{3}$,2)

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知函数f(x)=x2-2x,若函数F(x)=|f(x)|+|f(a-x)|-t有四个零点,且它们的和为2,则实数t的取值范围是(1,$\frac{3}{2}$).

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是(  )
A.30$\sqrt{34}$B.60$\sqrt{34}$C.30$\sqrt{34}$+135D.135

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,在四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,点M在侧棱SC上,∠ABM=60°.若以DA,DC,DS,分别为x轴,y轴,z轴建立如图所示的空间直角坐标系D-xyz,则M的坐标为(0,1,1).

查看答案和解析>>

科目: 来源: 题型:解答题

9.设等比数列{an}的前n项和为Sn=(-$\frac{1}{4}$)n+k.
(1)求k的值及数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}|\frac{{a}_{n}}{5}|•lo{g}_{2}|\frac{{a}_{n+1}}{5}|}$,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案