科目: 来源: 题型:
【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;
(3)若a=1,记乙型号电视机销售量的方差为
,根据茎叶图推断b为何值时,
达到最值.
(只需写出结论)
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建了一个课外兴趣小组.
(I)求课外兴趣小组中男、女同学的人数;
(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(III)在(II)的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的实验数据为39,40,40,42,44,请问哪位同学的实验更稳定?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直角梯形ABCD中,AD∥BC,∠ADC=90°,A(-3,-10),
B (-2,-1),C(3,4),
(1)求边AD和CD所在的直线方程;
(2)数列
的前
项和为
,点
在直线CD上,求证
为等比数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在以
为顶点的五面体中,O为AB的中点,
平面
,
∥
,
,
,
.
(1)在图中过点O作平面
,使得
∥平面
,并说明理由;
![]()
(2)求直线DE与平面CBE所成角的正切值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A(4, 0),B(2, 2),C (6, 0),记△ABC的外接圆为⊙P.
(1)求⊙P的方程.
(2)对于线段PA上的任意一点G,是否存在以B为圆心的圆,在圆B上总能找到不同的两点E、F,满足
=
,若存在,求圆B的半径
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区
的年平均浓度不得超过
微克/立方米,
的24小时平均浓度不得超过
微克/立方米.某城市环保部门随机抽取了一居民区去年20天
的24小时平均浓度的监测数据,数据统计如下:
组别 |
(微克/立方米) | 频数(天) | 频率 |
第一组 |
| 3 | 0.15 |
第二组 |
| 12 | 0.6 |
第三组 |
| 3 | 0.15 |
第四组 |
| 2 | 0.1 |
(1)从样本中
的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天
的24小时平均浓度超过75微克/立方米的概率;
(2)求样本平均数,并根据样本估计总体的思想,从
的年平均浓度考虑,判断该居民区的环境是
否需要改进?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四边形
中,已知
,
,点
在
轴上,
,且对角线
.
(1)求点
的轨迹
的方程;
(2)若点
是直线
上任意一点,过点
作点
的轨迹
的两切线
,
为切点,直线
是否恒过一定点?若是,请求出这个定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)求函数
的极值;
(2)对于曲线上的不同两点
,如果存在曲线上的点
,且
使得曲线在点
处的切线
,则称
为弦
的伴随直线,特别地,当
时,又称
为
的
—伴随直线.
①求证:曲线
的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线
,使得曲线
的任意一条弦均有
—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.
![]()
(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com