科目: 来源: 题型:
【题目】对于函数
有如下结论:
①该函数为偶函数;
②若
,则
;
③其单调递增区间是
;
④值域是
;
⑤该函数的图象与直线
有且只有一个公共点.(本题中
是自然对数的底数)
其中正确的是__________.(请把正确结论的序号填在横线上)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知方程
.
(1)求该方程表示一条直线的条件;
(2)当
为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线
在
轴上的截距为-3,求实数
的值;
(4)若方程表示的直线
的倾斜角是45°,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,点
,直线
,设圆
的半径为1,圆心在
上.
![]()
(1)若圆心
也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?
查看答案和解析>>
科目: 来源: 题型:
【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有
个人.把这
个人按照年龄分成5组:第1组
,第2组
,第3组
,第4组
,第5组
,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.
![]()
(1)求
和
的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在三棱锥
中,
和
是边长为
的等边三角形,
,
是
中点,
是
中点.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值的大小;
(Ⅲ)在棱
上是否存在一点
,使得
的余弦值为
?若存在,指出点
在
上的位置;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地拟建一座长为640米的大桥
,假设桥墩等距离分布,经设计部门测算,两端桥墩
造价总共为100万元,当相邻两个桥墩的距离为
米时(其中
).中间每个桥墩的平均造价为
万元,桥面每1米长的平均造价为
万元.
![]()
(1)试将桥的总造价表示为
的函数
;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩
除外)应建多少个桥墩?
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数
定义域为
,且对任意实数
,有
,则称
为“
形函数”,若函数
定义域为
,函数
对任意
恒成立,且对任意实数
,有
,则称为“对数
形函数” .
(1)试判断函数
是否为“
形函数”,并说明理由;
(2)若
是“对数
形函数”,求实数
的取值范围;
(3)若
是“
形函数”,且满足对任意
,有
,问
是否为“对数
形函数”?证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
为实数).
(1)当
时,求函数
的图象在点
处的切线方程;
(2)设函数
(其中
为常数),若函数
在区间
上不存在极值,且存在
满
足
,求
的取值范围;
(3)已知
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com