科目: 来源: 题型:
【题目】对于函数有如下结论:
①该函数为偶函数;
②若,则;
③其单调递增区间是;
④值域是;
⑤该函数的图象与直线有且只有一个公共点.(本题中是自然对数的底数)
其中正确的是__________.(请把正确结论的序号填在横线上)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知方程.
(1)求该方程表示一条直线的条件;
(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线在轴上的截距为-3,求实数的值;
(4)若方程表示的直线的倾斜角是45°,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?
查看答案和解析>>
科目: 来源: 题型:
【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.
(1)求 和的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在三棱锥中, 和是边长为的等边三角形, , 是中点, 是中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的正弦值的大小;
(Ⅲ)在棱上是否存在一点,使得的余弦值为?若存在,指出点在上的位置;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地拟建一座长为640米的大桥,假设桥墩等距离分布,经设计部门测算,两端桥墩造价总共为100万元,当相邻两个桥墩的距离为米时(其中).中间每个桥墩的平均造价为万元,桥面每1米长的平均造价为万元.
(1)试将桥的总造价表示为的函数;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩除外)应建多少个桥墩?
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数定义域为,且对任意实数,有,则称为“形函数”,若函数定义域为,函数对任意恒成立,且对任意实数,有,则称为“对数形函数” .
(1)试判断函数是否为“形函数”,并说明理由;
(2)若是“对数形函数”,求实数的取值范围;
(3)若是“形函数”,且满足对任意,有,问是否为“对数形函数”?证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(为实数).
(1)当时,求函数的图象在点处的切线方程;
(2)设函数(其中为常数),若函数在区间上不存在极值,且存在满
足,求的取值范围;
(3)已知,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com