科目: 来源: 题型:
【题目】在直角坐标系
中,已知曲线
(
为参数),在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(1)求曲线
与
的交点
的直角坐标;
(2)设点
,
分别为曲线
上的动点,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一张半径为4的圆形纸片的圆心为
,
是圆内一个定点,且
,
是圆上一个动点,把纸片折叠使得
与
重合,然后抹平纸片,折痕为
,设
与半径
的交点为
,当
在圆上运动时,则
点的轨迹为曲线
,以
所在直线
为轴,
的中垂线为
轴建立平面直角坐标系,如图.
![]()
(1)求曲线
的方程;
(2)曲线
与
轴的交点为
,
(
在
左侧),与
轴不重合的动直线
过点
且与
交于
、
两点(其中
在
轴上方),设直线
、
交于点
,求证:动点
恒在定直线
上,并求
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰有一个元素,求
的值;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2-3x+lnx.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有
恒成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是抛物线
的焦点,
为抛物线
上不同的两点,
分别是抛物线
在点
、点
处的切线,
是
的交点.
(1)当直线
经过焦点
时,求证:点
在定直线上;
(2)若
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取
名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于
分者为“成绩优良”.
![]()
(1)分别计算甲、乙两班
个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班
个样本中,成绩在
分以下(不含
分)的学生中任意选取
人,求这
人来自不同班级的概率;
(3)由以上统计数据填写下面
列联表,并判断能否在犯错误的概率不超过
的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附: ![]()
独立性检验临界值表:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目: 来源: 题型:
【题目】数学课上,老师为了提高同学们的兴趣,先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3;又让同学们从1到7循报数,最后一个同学报4.请你设计一个算法,计算这个班至少有多少人,并画出程序框图.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为
.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目: 来源: 题型:
【题目】下面程序的功能是( )
![]()
A. 求1×2×3×4×…×10 00的值
B. 求2×4×6×8×…×10 000的值
C. 求3×5×7×9×…×10 001的值
D. 求满足1×3×5×…×n>10 000的最小正整数n
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com