相关习题
 0  256776  256784  256790  256794  256800  256802  256806  256812  256814  256820  256826  256830  256832  256836  256842  256844  256850  256854  256856  256860  256862  256866  256868  256870  256871  256872  256874  256875  256876  256878  256880  256884  256886  256890  256892  256896  256902  256904  256910  256914  256916  256920  256926  256932  256934  256940  256944  256946  256952  256956  256962  256970  266669 

科目: 来源: 题型:

【题目】某高中为了解高中学生的性别和喜爱打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:

喜爱打篮球

不喜欢打篮球

合计

男生

5

女生

10

合计

已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为.

(1)请将上述列联表补充完整;

(2)判断是否有99.5%的把握认为喜欢打篮球与性别有关?

附:

7.879

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子中的发芽数,得到如下资料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻2天数据的概率;

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的参数方程为为参数),若是圆轴正半轴的交点,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,设过点的圆的切线为.

(1)求直线的极坐标方程;

(2)求圆上到直线的距离最大的点的直角坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】“公益行”是由某公益慈善基金发起并主办的一款将用户的运动数据转化为公益步数的捐助公益项目的产品,捐助规则是满10000步方可捐助且个人捐出10000步等价于捐出1元,现粗略统计该项目中其中200名的捐助情况表如下:

捐款金额(单位:元)

捐款人数

4

152

26

10

3

5

(1)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在之间人数的分布列;

(2)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在的奖励红包5元;捐款额在的奖励红包8元;捐款额在的奖励红包10元;捐款额大于250的奖励红包15元.已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.

查看答案和解析>>

科目: 来源: 题型:

【题目】(A)在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为 (为参数), 是曲线上的动点, 为线段的中点,设点的轨迹为曲线.

(1)求的坐标方程;

(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.

(B)设函数.

(1)当时,求不等式的解集;

(2)对任意 不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:

男性

女性

合计

20~35岁

40

100

36~50岁

40

90

合计

100

90

190

(1)求统计数据表中的值;

(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;

(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.

参考数表:

参考公式: .

查看答案和解析>>

科目: 来源: 题型:

【题目】某校计划面向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有65人.在这124名学生中选修社会科学类的男生有22人、女生有40人.

(1)根据以上数据完成下列列联表;

(2)判断能否有99.9%的把握认为科类的选修与性别有关?

附: ,其中

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用(单位:万元)与隔热层厚度(单位: )满足关系,若不建隔热层,每年能源消耗为8万元.设为隔热层建造费用与20年的能源消耗费用之和.

(1)求的值及的表达式;

(2)隔热层修建多厚时,总费用达到最小?并求最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列结论:

①若扇形的中心角为2,半径为1,则该扇形的面积为1;②函数是偶函数;③点是函数图象的一个对称中心;④函数上是减函数.其中正确结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:

0

4

5

1

2

2

1

则下列关于的命题:

①函数的极大值点为2;

②函数上是减函数;

③如果当时, 的最大值是2,那么的最大值为4;

④当,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

同步练习册答案