相关习题
 0  256910  256918  256924  256928  256934  256936  256940  256946  256948  256954  256960  256964  256966  256970  256976  256978  256984  256988  256990  256994  256996  257000  257002  257004  257005  257006  257008  257009  257010  257012  257014  257018  257020  257024  257026  257030  257036  257038  257044  257048  257050  257054  257060  257066  257068  257074  257078  257080  257086  257090  257096  257104  266669 

科目: 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)求的单调区间;

(2)若,当对任意恒成立时, 的最大值为,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )内有零点,求a的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目: 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目: 来源: 题型:

【题目】解答
(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的两个根为x1、x2 , 且|x1﹣x2|的最小值为π.
(1)求f(x);
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的 ,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调增区间和在(﹣ )上的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]

(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:

x

3

4

5

6

y

2.5

3

4

4.5


(1)求y关于x的线性回归方程;(已知
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤.

查看答案和解析>>

同步练习册答案