科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系.若直线
的极坐标方程为
,曲线
的极坐标方程为
,将曲线
上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
两点,点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)请分析函数y=
+1是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用函数模型y=
作为奖励函数模型,试确定最小的正整数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学为调研学生在
,
两家餐厅用餐的满意度,从在
,
两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以10为组距分成6组:
,
,
,
,
,
,得到
餐厅分数的频率分布直方图,和
餐厅分数的频数分布表:
![]()
(Ⅰ)在抽样的100人中,求对
餐厅评分低于30的人数;
(Ⅱ)从对
餐厅评分在
范围内的人中随机选出2人,求2人中恰有1人评分在
范围内的概率;
(Ⅲ)如果从
,
两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率是
,且过点
.直线
与椭圆
相交于
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的面积的最大值;
(Ⅲ)设直线
,
分别与
轴交于点
,
.判断
,
大小关系,并加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2x﹣
(x∈R).
(1)讨论f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
﹣
的定义域为集合A,B={x∈Z|3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(RA)∩B;
(2)若A∪C=R,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用
表示.(把频率当作概率).
![]()
(1)假设
,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字
的取值是随机的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com