科目: 来源: 题型:
【题目】如图所示的几何体
中,四边形
为菱形,
,
,
,
,平面
平面
,
,
为
的中点,
为平面
内任一点.
(1)在平面
内,过
点是否存在直线
使
?如果不存在,请说明理由,如果存在,请说明作法;
(2)过
,
,
三点的平面将几何体
截去三棱锥
,求剩余几何体
的体积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为
、
、
、
、
五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:
![]()
(1)试估算该校高三年级学生获得成绩为
的人数;
(2)若等级
、
、
、
、
分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为
的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..
查看答案和解析>>
科目: 来源: 题型:
【题目】某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( ) ![]()
A.73.3,75,72
B.72,75,73.3
C.75,72,73.3
D.75,73.3,72
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | n | 0.350 |
第3组 | [170,175) | 30 | p |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185] | 10 | 0.100 |
合计 | 100 | 1.000 |
![]()
(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下.则下面结论中错误的一个是( ) ![]()
A.甲的极差是29
B.乙的众数是21
C.甲罚球命中率比乙高
D.甲的中位数是24
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为ɑ 的正方体ABCD﹣A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点. ![]()
(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A、B、C为三角形ABC的三内角,其对应边分别为a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;
(2)若
,b+c=4,求三角形ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
:
(
为参数,
),在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
:
.
(1)试将曲线
与
化为直角坐标系
中的普通方程,并指出两曲线有公共点时
的取值范围;
(2)当
时,两曲线相交于
,
两点,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合
,对于集合
的两个非空子集
,
,若
,则称
为集合
的一组“互斥子集”.记集合
的所有“互斥子集”的组数为
(视
与
为同一组“互斥子集”).
(1)写出
,
,
的值;
(2)求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com